

Copyright © 2017 by McGraw-Hill Education. All rights reserved. Except as
permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission
of the publisher.

ISBN: 978-1-25-983610-7
MHID: 1-25-983610-X.

The material in this eBook also appears in the print version of this title:
ISBN: 978-1-25-983609-1, MHID: 1-25-983609-6.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a
trademark symbol after every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefit of the trademark owner,
with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to
use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at
www.mhprofessional.com.

Information has been obtained by Publisher from sources believed to be
reliable. However, because of the possibility of human or mechanical error by
our sources, Publisher, or others, Publisher does not guarantee to the
accuracy, adequacy, or completeness of any information included in this
work and is not responsible for any errors or omissions or the results obtained
from the use of such information.

Oracle Corporation does not make any representations or warranties as to the
accuracy, adequacy, or completeness of any information contained in this
Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors
reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to

http://www.mhprofessional.com

store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill Education’s prior consent. You may use the
work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if
you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION
AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR
RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING
ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill Education and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its
operation will be uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill Education has no responsibility for the content of
any information accessed through the work. Under no circumstances shall
McGraw-Hill Education and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result
from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

I would like to dedicate this to my wife, Mildie.
This would not have been possible without

your encouragement and support.
Thank you, you are the best!

—Anton Els

To my wife and kids, who have to put up with me
spending too much time investigating Oracle internals.

—Vít Špinka

I dedicate this book to the great people I’ve encountered during
my professional life. I was lucky to work, from the beginning,

with the kind of people who trust you and help you to improve
your skills. I wish the same to every beginner starting in IT.

—Franck Pachot

About the Authors
Anton Els, Oracle ACE, is Vice President Engineering at Dbvisit Software
Limited. Anton has more than 15 years of experience with Oracle technology,
with a particular focus on the Oracle Database, backup and recovery, standby
databases, Oracle Linux, virtualization, and docker. Anton is an active
member of the Independent Oracle Users Group (IOUG) and vice president
of the New Zealand OUG (NZOUG). He is an Oracle Certified Master
(OCM) Oracle Database 11g; Oracle Certified Professional (OCP) Oracle
Database 8i to 12c; Oracle Certified Expert (OCE) Oracle Real Application
Clusters 11g and Grid Infrastructure Administrator; Red Hat 5 RHSA; and
Oracle Solaris 10 SCSA. He regularly presents at industry and user group
conferences, such as Collaborate, Oracle OpenWorld dbtech showcase Japan,
NZOUG, and the Asia-Pacific and Latin America Oracle Technology
Network Tour. He can be reached on Twitter @aelsnz or through his blog at
www.oraclekiwi.co.nz.

Vít Špinka, Oracle ACE Associate, is Chief Architect at Dbvisit Software
Limited. He has more than 15 years of experience with Oracle technology,
with a particular focus on the Oracle Database. Vít is an active member of
IOUG and a regular presenter at Oracle OpenWorld, Collaborate, UKOUG,
DOAG, and NZOUG. He is an Oracle Certified Master (OCM) Oracle
Database 10g, 11g, and 12c; Oracle Certified Professional (OCP) Oracle
Database 9i to 12c; Oracle Database 10g Real Application Cluster
Administration Expert; and LPIC-2 Linux Network Professional. He can
be reached on Twitter @vitspinka or through his blog at
http://vitspinka.blogspot.com/.

Franck Pachot, Oracle ACE Director, is Principal Consultant, trainer, and
Oracle Technology Leader at dbi services (Switzerland) with more than
20 years of experience with Oracle technology. Franck is a regular presenter
at Oracle OpenWorld, IOUG Collaborate, DOAG, SOUG, and UKOUG; an
active member of the SOUG and DOAG user groups; and a proud member of
the OraWorld Team. He is an Oracle Certified Master (OCM) Oracle

http://www.oraclekiwi.co.nz
http://vitspinka.blogspot.com/

Database 11g and 12c, Oracle Certified Professional (OCP) Oracle Database
8i to 12c, and Oracle Certified Expert (OCE) Oracle Database 12c:
Performance Management and Tuning, and also holds an Oracle Exadata
Database Machine 2014 Implementation Essentials certification. Franck can
be reached on Twitter @franckpachot or through his blog at
http://blog.pachot.net.

http://blog.pachot.net

About the Technical Editors
Deiby Gómez was both the youngest Oracle ACE (23 years old) and ACE
Director (25 years old) in the world and the first in his home country,
Guatemala. He is also the youngest Oracle Certified Master 11g (OCM 11g,
February 2015) in Latin America (24 years old) and the first in Guatemala. In
addition, Deiby also became the youngest Oracle Certified Master 12c in the
world (26 years old, April 2016) and the first OCM 12c in Central America.
He is the recent winner of SELECT Journal Editor’s Choice Award 2016
(Las Vegas, NV) and a frequent speaker at Oracle events around the world,
including Oracle Technology Network Latin American Tour 2013, 2014,
2015, and 2016; Collaborate (United States); and Oracle Open World (Brazil
and United States). The first Guatemalan accepted as a beta tester by Oracle
Database (version 12cR2), Deiby has had several articles published in
English, Spanish, and Portuguese on Oracle’s website, DELL’s Toad World,
and hundreds more on his blog. He appeared in Oracle Magazine in Nov/Dec
2014 as an outstanding expert and currently serves as the President of Oracle
Users Group of Guatemala (GOUG), Director of Support Quality in Latin
American Oracle Users Group Community (LAOUC), and co-founder of
OraWorld Team. He also currently provides Oracle services in Latin America
with his own company, NUVOLA, S.A.

Arup Nanda has been an Oracle DBA for more than 20 years, with
experience spanning all aspects, from modeling to performance tuning and
Exadata. He has written about 500 published articles, co-authored five books,
delivered 300 sessions, blogs at arup.blogspot.com, and mentors new and
seasoned DBAs. He won Oracle’s DBA of the Year in 2003 and Enterprise
Architect of the Year in 2012, and he is an ACE Director and a member of
Oak Table Network.

About the Technical and Language Editor
Mike Donovan joined the Dbvisit team in 2007, where he has held a number
of different roles, including head of the Global Support team and Digital
Business Development pioneer. He has recently been appointed to the role of
Chief Technology Officer (CTO). He is enthusiastic about new technologies
and working with customers and partners to conceive of and build bridges
between the existing RDBMS world and the new frontiers of Big Data, for
businesses’ benefit. He is motivated by championing smart, cost-effective
approaches and alternatives. Mike has a diverse background in technology
and the arts and considerable experience in technical customer support and
software development. He is passionate about Oracle Database technology,
having worked with it for more than a decade; spoken at numerous industry
conferences including OOW, RMOUG, dbtech showcase Japan, and
Collaborate; spent time as a production DBA; and gained certifications on
this RDBMS platform in versions 9i to 12c.

Contents at a Glance

PART I
What Multitenant Means

1 Introduction to Multitenant
2 Creating the Database

3 Single-Tenant, Multitenant, and Application Containers

PART II
Multitenant Administration

4 Day-to-Day Management
5 Networking and Services
6 Security

PART III
Backup, Recovery, and Database Movement

7 Backup and Recovery
8 Flashback and Point-in-time-Recovery
9 Moving Data

PART IV
Advanced Multitenant

10 Oracle Database Resource Manager

11 Data Guard
12 Sharing Data Across PDBs
13 Logical Replication

Index

Contents

Introduction

PART I
What Multitenant Means

1 Introduction to Multitenant
History Lesson: A New Era in IT

The Road to Multitenant
Schema Consolidation
Table Consolidation
Server Consolidation
Virtualization
Multiple Databases Managed by One Instance
Summary of Consolidation Strategies

The System Dictionary and Multitenant Architecture
The Past: Non-CDB
Multitenant Containers
Multitenant Dictionaries
Working with Containers

What Is Consolidated at CDB Level
Data and Metadata at CDB Level

Summary
2 Creating the Database

Creating a Container Database (CDB)
What About OMF?
CDB Creation Options

Creating a Pluggable Database
Create a New PDB from PDB$SEED
Create a New PDB Using the Local Clone Method

Create a PDB Using SQL Developer
Create a PDB Using the DBCA
Create a PDB Using Cloud Control

Using the catcon.pl Script
Summary

3 Single-Tenant, Multitenant, and Application Containers
Multitenant Architecture Is Not an Option

Non-CDB Deprecation
Noncompatible Features

Single-Tenant in Standard Edition
Data Movement
Security
Consolidation with Standard Edition 2

Single-Tenant in Enterprise Edition
Flashback PDB
Maximum Number of PDBs

Using the Multitenant Option
Application Containers
Consolidation with Multitenant Option

Summary

PART II
Multitenant Administration

4 Day-to-Day Management
Choosing a Container to Work With
Managing the CDB

Create the Database
Database Startup and Shutdown
Drop the Database
Modify the Entire CDB
Modify the Root

Managing PDBs
Create a New PDB

Open and Close a PDB
View the State of PDBs
View PDB Operation History
Run SQL on Multiple PDBs
Modify the PDB
Drop a PDB

Patching and Upgrades
Upgrade CDB
Plugging In
Patching

Using CDB-Level vs. PDB-Level Parameters
CDB SPFILE
PDB SPFILE Equivalent
SCOPE=MEMORY
Alter System Reset
ISPDB_MODIFIABLE
Container=ALL
DB_UNIQUE_NAME

Summary
5 Networking and Services

Oracle Net
The Oracle Net Listener
The LREG Process
Networking: Multithreaded and Multitenant
Service Names

Default Services and Connecting to PDBs
Creating Services

Create a Dedicated Listener for a PDB
Summary

6 Security
Users, Roles, and Permissions

Common or Local?
What Is a User?
CONTAINER=CURRENT

CONTAINER=COMMON
Local Grant
Common Grant
Conflicts Resolution
Keep It Clear and Simple
CONTAINER_DATA
Roles
Proxy Users

Lockdown Profiles
Disable Database Options
Disable Alter System
Disable Features

PDB Isolation
PDB_OS_CREDENTIALS
PATH_PREFIX
CREATE_FILE_DEST

Transparent Data Encryption
Setting Up TDE
Plug and Clone with TDE
TDE Summary

Summary

PART III
Backup, Recovery, and Database Movement

7 Backup and Recovery
Back to Basics

Hot vs. Cold Backups
RMAN: The Default Configuration
RMAN Backup Redundancy
The SYSBACKUP Privilege

CDB and PDB Backups
CDB Backups
PDB Backups
Do Not Forget Archive Logs!

Recovery Scenarios
Instance Recovery
Restore and Recover a CDB
Restore and Recover a PDB

RMAN Optimization Considerations
The Data Recovery Advisor
Block Corruption
Using Cloud Control for Backups

Back Up to the Cloud
Summary

8 Flashback and Point-in-time Recovery
Pluggable Database Point-in-Time

Recover PDB Until Time
Where Is the UNDO?
Summary of 12.1 PDBPITR

Local UNDO in 12.2
Database Properties
Create Database
Changing UNDO Tablespace
Changing UNDO Mode
Shared or Local UNDO?

PDB Point-in-Time Recovery in 12.2
PDBPITR in Shared UNDO Mode
PDBPITR in Local UNDO Mode

Flashback PDB
Flashback Logging
Flashback with Local UNDO
Flashback in Shared UNDO
Restore Points at the CDB and PDB Levels
Clean Restore Point

Resetlogs
Flashback and PITR

When Do You Need PITR or Flashback?
Impact on the Standby Database

Auxiliary Instance Cleanup
Summary

9 Moving Data
Grappling with PDB File Locations
Plugging In and Unplugging

Unplug and Plug In a PDB
An Unplugged Database Stays in the Source
What Exactly Is in the XML File?
Check Compatibility for Plug-In
Plug In a PDB as Clone
PDB Archive File

Cloning
Cloning a Local PDB
Cloning a Remote PDB

Application Container Considerations
Converting Non-CDB Database

Plug In a Non-CDB
Cloning a Non-CDB

Moving PDBs to the Cloud
Triggers on PDB Operations
Full Transportable Export/Import
Transportable Tablespaces
Summary

PART IV
Advanced Multitenant

10 Oracle Database Resource Manager
Resource Manager Basics

Key Resource Manager Terminologies
Resource Manager Requirements
Resource Manager Levels

The CDB Resource Plan
Resource Allocation and Utilization Limits

Default and Autotask Directives
Creating a CDB Resource Plan

The PDB Resource Plan
Creating a PDB Resource Plan
Enable or Disable a PDB Resource Plan
Removing a PDB Resource Plan

Manage PDB Memory and I/O via Initialization Parameters
PDB Memory Allocations
Limit PDB I/O

Instance Caging
Instance Caging to Resource Manager

Monitoring Resource Manager
Viewing the Resource Plan and Plan Directives
Monitoring PDBs Managed by Resource Manager

Summary
11 Data Guard

Active Data Guard Option
Creating a Physical Standby

Duplicate with RMAN
Create a Standby with Cloud Control

Managing a Physical Standby in a Multitenant Environment
Creating a New PDB on the Source
Removing PDB from Source
Changing the Subset
Cloud Control

Standby in the Cloud
Summary

12 Sharing Data Across PDBs
Database Links
Sharing Common Read-Only Data

Transportable Tablespaces
Storage Snapshots and Copy on Write

Cross-PDB Views
Simple User Tables

Consolidated Data
Cross-Database Replication
Summary

13 Logical Replication
Oracle LogMiner
Obsolete Features

Oracle CDC
Oracle Streams
Oracle Advanced Replication

Oracle GoldenGate
Multitenant Support in Oracle GoldenGate
Big Data Adapters

Oracle XStream
Logical Standby

Use in Upgrade
Other Third-Party Options

Dbvisit Replicate
Dell SharePlex

Summary

Index

O

Introduction

racle Database 12c release 1 (12.1) introduced the new multitenant
option to the world, and since this time the phrase “pluggable
database” has been bandied about, often without a clear

understanding of this functionality or its implications. But, simply put,
multitenant is one of the most significant architectural changes to have been
implemented in the Oracle Database software since its first release. It brings
new features, but it also changes many of the ways in which we Oracle DBAs
perform administrative tasks on a day-to-day basis. And with the second
release of 12c (12.2), the features available with the multitenant option have
been extended even further. What is clear is that the old architecture is
deprecated and that multitenant is here to stay—and cannot be ignored.

The arrival of Oracle Database 12c Multitenant requires that DBAs adjust
the way they think about and perform daily tasks. And whether you are
running a single tenant or a large number of pluggable databases, there will
be a substantial learning curve. So, more than covering what’s new about
multitenant alone, the aim of this book is to encompass how this relates to
DBA tasks, from the core day-to-day operations to advanced tasks. You can
read it as an Oracle Database administration guide for the 12c era, and
beyond, equipping you with essential “on-the-job” knowledge about new
features, syntax changes, and best practice options. This book has been
written by three experienced and certified DBAs and enhanced by highly
skilled reviewers, all with a passion to see Oracle Database administration
done with insight and excellence.

Part I introduces multitenant functionality. Key questions include why
Oracle Corporation introduced it, in what ways this mimicked other
RDBMSs, and whether it is actually required by the way we design and
deploy our applications nowadays. Chapter 1 addresses these questions and
explains the multitenant architecture. In Chapter 2, we cover the container
database (CDB) creation process and how to do it properly. Because creating
a CDB is now the default option in 12c, believe it or not we actually

encounter people who have created a CDB without knowing it. Before
launching into detail on all the new multitenant features, Chapter 3 helps
guide you toward making informed decisions between CDB or non-CDB, and
it outlines the different editions and options available to you.

Part II gives you a sense of what will change in your day-to-day tasks
when you use multitenant. The section starts with Chapter 4, which focuses
on pluggable database (PDB) creation and administration. Upgrading to 12c
is also covered, and then networking and services are detailed in Chapter 5.
This is followed, in Chapter 6, by an important topic—security—in which we
address isolation of PDBs, user commonality, and encryption.

Part III covers the greatly enhanced backup and duplicate operations
possible at the PDB level. Chapter 7 kicks this off with a detailed look at one
of the most important areas every DBA should be familiar with—backup and
recovery—and how we might revert to the previous state of a database, if
needed. Chapter 8 discusses how this can be achieved with flashback
technology, and then follows with details on how you can perform a point-in-
time recovery at the PDB level. The final chapter in this section, Chapter 9,
tackles unplugging/plugging a PDB as well as cloning, transporting, and
online relocation of PDBs

In Part IV you learn how to take multitenant to the next level. When
consolidating multiple PDBs resource consumption, you must be aware of
Resource Manager, which is the focus of Chapter 10; this often underused
facility is expected to become more crucial in multitenant environments.
Chapter 11 takes a look at protecting your multitenant database environment
with Data Guard, because PDBs may have to interact with it, and Chapter 12
builds on this in its discussion on data sharing within a CDB. Cloud-based
solutions tend to require that data be delivered in a more flexible way than
physical cloning or synchronization, and this is the focus of the discussion
about logical replication in Chapter 13.

PART
I

What Multitenant Means

CHAPTER
1

Introduction to Multitenant

With Oracle Database 12c, Oracle introduced a major change to its
database architecture. Before Oracle Database 12c, an instance
could open only one database. If you had multiple databases, you

would need to start multiple instances, because they were totally isolated
structures, even when hosted on the same server. This differs from most other
RDBMSs, where a single system can manage multiple databases.

With the release of Oracle Database 12c, one instance can open multiple
pluggable databases or PDBs. Oracle has signaled that the new multitenant
architecture is here to stay, with the deprecation of the old style. With or
without the multitenant option, all future Oracle databases will run on the
multitenant architecture, a fact that Oracle database administrators cannot
ignore.

History Lesson: A New Era in IT
Let’s start by taking a brief look at the history of database use, before
introducing the architecture of the future. As you can see in Figure 1-1, we
will not refer to dates, but version numbers, going back to the time when the
Oracle Database became predominant.

FIGURE 1-1. From IT consolidation to the cloud

When Oracle Database 8i and 9i were on the market, midrange computers
became prevalent in data centers. We were moving from the mainframe era to
a client/server era, and Oracle architecture was very well suited for that.
Written in the C programming language, it was available on multiple
platforms and with all user management contained within its data dictionary.
It was ready for the client/server architecture, using the OS only to listen on a
TCP/IP port and to store files. Furthermore, the architecture was scalable on
minicomputers, thanks to the parallel server feature, which would later
become RAC (Real Application Clusters).

These databases were growing along with the overall number of servers.
It was common at that time to have a lot of physical servers with direct
attached disks (DAS), each running one or two Oracle Database 8i or 9i
instances.

With the number of databases increasing, it became a nightmare to
maintain all those servers and disks. Having internal disks made capacity
planning tremendously difficult when facing the exponential increase of data.
By the time Oracle Database 10g was introduced, we needed to consolidate
storage, so we put the database datafiles into a storage array, shared by all
servers through a storage area network (SAN); that was storage
consolidation.

By the time Oracle Database 11g rolled around, the prevailing thought
was to do with servers what had been done with disks earlier. Instead of
sizing and maintaining multiple servers, virtualization software brought us
the possibility of putting our physical servers in a farm and provisioning
virtual machines on top of them. That was the way in this previous era:
application servers, SAN or network-attached storage (NAS), and virtual
machines.

And now Oracle Database 12c accompanies a new day. Even
organizations with consolidated storage and servers now realize that
operating this infrastructure is not their core business, and instead, they now
demand IT as a service, which is both scalable and flexible. Small companies
want to provision their IT from a public cloud, and larger companies build
their own private clouds. In both cases, virtualization can provide
Infrastructure as a Service (IaaS). But we also want Application as a Service
(AaaS) and need Database as a Service (DBaaS). This is a significant change
in the technology ecosystem, similar in scale and importance to the earlier
move from client/server to application servers. This new direction will not be

immediate—it will take time. But it is safe to predict that over the next ten
years, the hybrid mixed model (on-premise/cloud) will start strong, but be
slowly supplanted by the cloud.

As is expected, a new era has different requirements, and the future of
databases seems bound up with consolidation, agile development, and rapid
provisioning. For Oracle, some such features came progressively from Oracle
Database 9i to 11g, such as easy transport of data, cloning, and thin
provisioning. But two core architectural foundations came from the previous
era and were not ready to accommodate consolidation: the need to run one
instance per database, and having one data dictionary per database. Oracle
Database 12c provides the answer: multitenancy. Retaining its portability
philosophy, Oracle has designed this architecture to enable you to run your
application on the same database, with the same software running from small
server to large cloud.

The Road to Multitenant
This new era is about consolidation. Some people can imagine it as a
centralized system and centralized administration, recalling the time of
mainframes. But there is another challenge that comes with it: we need more
and more agility. Provisioning a database is not an easy operation today, and
we cannot make it worse.

Consider an example. You are an Oracle DBA. A developer comes to
your desk and asks for a new database; she is under the impression that this is
a simple demand, merely requiring a few clicks of an administration
interface. You look at her, wide eyed, and tell her she has to fill out a request
with specifics related to storage, memory, CPU, and availability
requirements. Furthermore, you explain, the request will have to be approved
by management, and then it will take a few days or a week to set up. And
here begins a pattern of misunderstanding between dev and ops.

The developer probably hasn’t worked with Oracle databases before, so
she has some notion of a database as a lightweight container for her
application tables—and in many other non-Oracle RDBMSs, this is actually
what is referred to as a “database.”

In Oracle, however, we have lightweight containers—schemas at logical
level and tablespaces at physical level—but a database is an entity that

comprises much more than that. An Oracle database is a set of schemas and
tablespaces, plus all the metadata required to manage them (the data
dictionary), along with a significant amount of PL/SQL code to implement
the features (the DBMS packages). Each database must have its own
instance, including a number of background processes and shared memory.
And each database also has a structure to protect the transactions, comprising
undo tablespaces and redo logs.

For these reasons, provisioning a new database is not a trivial operation.
To do so, you must interact with the system administrators and the storage
teams, because you need server and disk resources for it. You don’t want to
put too many instances on the same server, but you can’t have a dedicated
physical server for each database. Because of this, today we often virtualize
and have a dedicated virtual machine (VM) for each instance, but this is not
possible for every application, for every environment, in any agile sort of
way—there are just too many of them. Furthermore, you end up wasting a lot
of resources when you have to allocate server, storage, and instance for each
database.

Prior to Oracle Database 12c, the answer to the developer, in this
scenario, probably was to create a new schema for her in an existing
database. But this solution is not always possible or feasible. Let’s explain
why.

Schema Consolidation
Schema was exactly the objective prior to 12c. Each application had one
schema owner, or a set of schemas if you wanted to separate tables and
procedures. They were logically independent of each other, and security was
controlled by grants.

Physically, you dedicated tablespaces to each application. This meant
that, in case of a datafile loss, only one application was offline during the
restore, which would also be the case if you wanted to relocate the tablespace
to another filesystem. However, everything else was shared to optimize
resource usage: instance processes and memory, SYSTEM and SYSAUX
tablespaces, with dictionary.

The backup strategy is common, and the high availability (HA) policy is
common. One DBA administers one database, and several applications run

on it. This is exactly what the Oracle Database was designed for from its first
versions.

Transportable Tablespaces
A large number of operations in the Oracle Database can be performed at the
tablespace level. This is especially true since the inception of the
transportable tablespaces feature, which enables you to physically copy your
application datafiles to another database, and even to a newer version.
Transportable tablespaces are significant because they were a forerunner to,
and an ancestor of, multitenant. The Oracle Corporation patent for
Transportable Tablespaces published in 1997 was entitled “Pluggable
tablespaces for database systems.” And the multitenant architecture is the
foundation for pluggable databases.

In this context, pluggable means that you can directly plug a physical
structure (datafile) into a database and have it become part of that database.
The transportable tablespaces feature enabled user tablespace datafiles to be
plugged into the database. Then only the metadata (dictionary entries) had to
be imported so that the logical object definitions matched what was stored
physically in the datafiles.

In 12c you can transport databases, which is nothing less than
transporting all user tablespaces: a “FULL=Y” transportable tablespace. But
metadata still has to be transferred logically, and that operation can be
lengthy if you have thousands of tables, even if those tables are empty. For
example, if you want to migrate a PeopleSoft database, which has 20,000+
tables, the metadata import alone can take hours to create all those empty
tables.

As you will see, with the superior implementation in multitenant, the
transport of pluggable databases is actually the transport of all datafiles,
including SYSTEM and SYSAUX, which stores the data dictionary, and
perhaps even the UNDO. This means that all metadata is also imported
physically and, as such, is a relatively quick operation.

Schema Name Collision
Schema consolidation is in fact difficult to achieve in real life. You want to
consolidate multiple applications into the same database, along with multiple

test environments of the same application, but you are faced with a number of
application constraints.

What do you do if the schema owner is hard-coded into the application
and you cannot change it? We were once involved in installing a telco billing
application that had to be deployed in a schema called PB, and we wanted to
consolidate multiple environments into the test database, but that was
forbidden. The reason was that the schema name was hard-coded into the
application, and in packages, and so on. We better understood that strange
schema name when we hosted a consultant from the application vendor. You
may be able to guess what his initials were.

If the application design is under your control you can avoid this
problem, and needless to say, you should never hard-code the schema name.
You can connect with any user and then simply set ALTER SESSION SET
CURRENT_SCHEMA to have all referenced objects prefixed by the application
schema owner. And if you have multiple schemas? It’s not a bad idea to have
multiple schemas for your application. For example, you can separate data
(tables) from code (PL/SQL packages). That makes for good isolation and
encapsulation of data. But even in that case, you don’t need to hard-code the
table schema name into the package. Just create synonyms for them into the
package schema, which will reference the objects from the table schemas.
You reference them from your PL/SQL code without the schema name
(synonyms are in the same schema), and they are resolved to the other
schema. If a name changes, you have to re-create only those synonyms. That
can be done very easily and automatically.

Public Synonyms and Database Links
With the above-mentioned synonyms, we were talking about private
synonyms, of course. Don’t use public synonyms. They cannibalize the
whole namespace. When an application creates public synonyms, you cannot
consolidate anything else on it. That’s a limitation for schema consolidation:
objects that do not belong to a specific schema can collide with other
applications and other versions or environments of the same application.

Roles, Tablespace Names, and Directories
An application can define and reference other objects, which are in the
database public namespace—such is the case for roles, directories, and

tablespace names. An application for which several environments can be
consolidated into the same database must have parameters in the Data
Definition Language (DDL) scripts so that those database objects names can
be personalized for each environment. If this is not the case, schema
consolidation will be difficult.

Those public objects that do not pertain to a schema also make data
movement more complex. For example, when you use Data Pump to import a
schema, those objects may need to have been created earlier.

Cursor Sharing
Even with an application that is designed for schema consolidation, you may
encounter performance issues when consolidating everything into the same
database. We once had a database with 3000 identical schemas. They were
data marts: same structure, different data.

And, obviously, the application code was the same. The user connected to
one data mart and ran the queries that were coded into the applications. This
meant that the same queries—exactly the same SQL text—were run on
different schemas. If you know how cursor sharing works in Oracle, you can
immediately see the problem: one cursor has thousands of child cursors. A
parent cursor is shared by all identical SQL text, and child cursors are created
when the objects are different, which is the case when you are not on the
same schema. Parsing has to follow a long chained list of children cursors,
holding latches during that time, and that means huge library cache
contention.

In multitenant, the parent cursors are shared for consolidation purposes,
but enhancements may be implemented in the child cursor search to alleviate
this problem.

Table Consolidation
When you want to consolidate the data for multiple environments of the same
application and same version of an application, which means that the tables
have exactly the same structure, you can put everything into the same table.
This is usually done by adding an environment identifier (company, country,
market, and so on) into each primary key. The advantage of this is that you
can manage everything at once. For example, when you want to add an index,

you can add it for all environments.
For performance and maintenance reasons, you can separate the data

physically by partitioning those tables on the environment ID and put the
partitions into different tablespaces. However, the level of isolation is very
low, and that affects performance, security, and availability.

Actually most of the applications that were designed like this usually
store only one environment. In most cases, the ID that is added in front of
each primary key has only one value, and this is why Oracle introduced the
skip scan index optimization. You can build virtual private database policy to
manage access on those environments. You can manage the partitions
independently, even at physical level, with exchange partitions. If you want
to see an example of that, look at the RMAN repository: information for all
registered databases is stored in the same tables. However, the isolation is not
sufficient to store different environments (test, development, production), or
to store different versions (where the data model is different).

Server Consolidation
If you want several independent databases but don’t want to manage one
server for each, you can consolidate several instances on the same server. If
you go to Oracle’s Ask Tom site (asktom.oracle.com/) for questions about the
recommended number of instances per server, Tom Kyte’s answer is this:
“We recommend no more than ONE instance per host—a host can be a
virtual machine, a real machine, we don’t care—but you want ONE HOST =
ONE INSTANCE.” In real life, however, most database servers we have seen
have several instances running on them. You can install multiple versions of
Oracle (the ORACLE_HOME), and you can have a lot of instances running
on one server—and you often have to do it. We have seen servers running as
many as 70 instances.

There are few ways to isolate the resources between instances. As for
memory, you can divide the physical memory among instances by setting the
shared memory with SGA_MAX_SIZE, and in 12c you can even limit the
process memory with PGA_AGGREGATE_LIMIT. You can also limit the CPU
used by each instance with instance caging, setting for each instance the
maximum number of processes that can run in the CPU. And with the latest
license, Standard Edition 2, you don’t even need Enterprise Edition to do
instance caging. We will come back to this in Chapter 3.

Running a lot of instances on one server is still a problem, however. For
example, when you reboot the server, you will have lot of processes to start
and memory to allocate. A server outage, planned or not, will penalize a lot
of applications. And you waste a lot of resources by multiplying the System
Global Area (SGA) and database dictionaries.

Virtualization
Today, virtualization is a good way to run only one instance per server
without having to manage a lot of physical servers. You have good isolation
of environments, you can allocate CPU, memory, and I/O bandwidth, within
limits. And you can even isolate them on different networks. However, even
if those servers are virtual machines, you don’t solve the resource wastage of
multiple OSs, Oracle software, memory, and the dictionary. And you still
have multiple databases to manage—to back up, to put in high-availability, in
Data Guard, and so on. And you have multiple OSs to patch and monitor.

In addition to that, virtualization can be a licensing nightmare. When
Oracle software is licensed by the processors where the software is installed,
Oracle considers that, on some virtualization technologies, the software is
installed everywhere the VM can run. The rules depend on the hypervisor
vendor and on the version of this hypervisor.

Multiple Databases Managed by One
Instance
The idea, then, is to find the consolidation level that fits both the isolation of
the environment and the consolidation of resources. This is at a higher level
than schema consolidation, but at a lower level than the instance and the
database as we know it today. It means you can have several databases
managed by the same instance on the same server.

This did not exist in versions of Oracle Database prior to 12c, but it is
now possible with multitenant architecture. Now, one consolidation database
can manage multiple pluggable databases. In addition to a new level that can
be seen as an independent database, the pluggable database architecture
brings agility in provisioning, moving, and upgrading.

Summary of Consolidation Strategies
Table 1-1 briefly summarizes the different consolidation alternatives prior to
multitenant.

TABLE 1-1. Consolidation Strategies Pros and Cons

The System Dictionary and
Multitenant Architecture
The major change in the multitenant architecture regards the system
dictionary. Let’s see how it was implemented in all previous versions and
what changed in 12c.

The Past: Non-CDB

A database stores both data and metadata. For example, suppose you have the
EMP table in the SCOTT schema. The description of the table—its name,
columns, datatypes, and so on—are also stored within the database. This
description—the metadata—is stored in a system table that is part of the
dictionary.

The Dictionary
Codd’s rules (created by E. F. Codd, who invented the relational model)
defines that a RDBMS must represent metadata in the same way as the data:
you can query both using SQL queries. As a database administrator, you do
that every day. You query the dictionary views, such as DBA_TABLES, to
get information about your database objects. This rule is for logical
representation only, and the dictionary views provide that. But Oracle went
further by deciding to store physically the metadata information in relational
tables—the same kind of tables as application tables, but they are owned by
SYS schema and stored in the system’s tablespaces (SYSTEM and
SYSAUX).

Without using the actual name and details of the Oracle dictionary,
Figure 1-2 gives you the idea. Table SCOTT.DEPT stores user data. The
definition of the table is stored in a dictionary table, SYS.COLUMNS,
because it stores column information here. And because this table is itself a
table, we have to store its definition in the same way.

FIGURE 1-2. Storing metadata with data

And there are not only table definitions in the dictionary. Until version 8i,
even the physical description of the data storage (table extents) were stored in
the dictionary. That changed with Locally Managed Tablespaces, however,
when tablespace became more self-contained in preparation of pluggable
features. On the other hand, at each new version, a lot of new information
was added to the dictionary. In the current version, a large part of the Oracle
Database software is implemented as PL/SQL packages, which are stored in
the dictionary.

Oracle-Maintained Objects
The implementation choice we’ve described is specific to the Oracle
RDBMS: The dictionary is stored in the database. Each database has its own

dictionary. And if you used logical export/import (EXP/IMP or Data Pump)
to move a database, you probably have seen how it is difficult to distinguish
the dictionary objects belonging to the system from the user objects
belonging to the applications. When you import a full database (FULL=Y in
IMPDP options, as discussed in Chapter 8) into a newly created database,
you don’t want to import the dictionary because it already exists in the target.

Of course, objects in the SYS schema are dictionary objects, and they are
ignored by Data Pump. But if someone has created user objects, then they are
lost. Grants on SYS objects are lost. And you can find system objects
elsewhere, such as OUTLN, MDSYS, XDB, and so on. A lot of roles come
from the system, and you can create your own role. It’s difficult to
distinguish them easily.

Fortunately, 12c includes a flag in DBA_OBJECTS, DBA_USERS, and
DBA_ROLES to identify the Oracle-maintained objects that are created with
the database and that do not belong to your application. Let’s query the
Oracle-maintained schemas list from a 12c database:

This is a big improvement in 12c. You can easily determine what belongs
to your application and what belongs to the system itself. The
ORACLE_MAINTAINED flag is present in DBA_OBJECTS,
DBA_USERS, and DBA_ROLES views and it’s now easy to distinguish the
objects created at database creation from those created by your application.

NOTE
Before 12c, you could try to list the objects from different views used
by Oracle internally. There are the views used by the data
movement, listing what they must ignore: EXU8USR for EXP/IMP,
KU_NOEXP_TAB for Data Pump, and
LOGSTDBY$SKIP_SUPPORT for Data Guard. There is also the
DEFAULT_PWD$ table to identify some pre-created schemas. And
you can also query the V$SYSAUX_OCCUPANTS or
DBA_REGISTRY views.

System Metadata vs. Application Metadata
We described the metadata structures: schemas, objects, and roles. Let’s go
inside them, into the data. You know that table definitions are stored in
dictionary tables, and in Figure 1-2 we simplified this in a SYS.COLUMN
table. But the dictionary data model is more complex than that. Actually,
object names are in SYS.OBJ$, table information is in SYS.TAB$, column
information is in SYS.COL$, and so on. Those are tables, and each has its
own definition—the metadata—which is stored in that dictionary:
SYS.TAB$, for example, has rows for your tables, but it also has rows for all
dictionary tables.

SYS.TAB$ has a row to store the SYS.TAB$ definition itself. You may
ask how that row is inserted at the table creation (which is database creation),
because the table does not yet exist. Oracle has a special bootstrap code that
is visible in the ORACLE_HOME. (It’s beyond the scope of this book, but
you can look at the dcore.bsq file in ORACLE_HOME/rdbms/admin
directory. You can also query the BOOTSTRAP$ table to see the code that
creates those tables at startup in dictionary cache, so that basic metadata is
available immediately to allow access to the remaining metadata.)

All metadata is stored in those tables, but this is a problem in non-
multitenant databases: system information (which belongs to the RDBMS
itself) is mixed with user information (which belongs to the application).
Both of their metadata is stored in the same tables, and everything is stored
into the same container: the database.

This is what has changed with multitenant architecture: we have now
multiple containers to separate system information from application
information.

Multitenant Containers
The multitenant database’s most important structure is the container. A
container contains data and metadata. What is different in multitenant is that
a container can itself contain several containers inside it in order to separate
objects logically and physically. A container database contains several
pluggable databases, and an additional one, the root, contains the common
objects.

A multitenant database is a container database (CDB). The old
architecture, in which a database is a single container that contains no
subdivisions, is called a non-CDB. In 12c you can choose which one you
want to create. You create a CDB, the multitenant one, by setting
ENABLE_PLUGGABLE=true in the instance parameters and by adding the
ENABLE PLUGGABLE to the CREATE DATABASE statement. (More details are in
Chapter 2.)

This creates the CDB, which will contain other containers identified by a
number, the container ID, and a name. It will contain at least a root container
and a seed container, and you will be able to add your own containers, up to
252 in version 12.1, and thousands in 12.2.

Pluggable Database
The goal of multitenant is consolidation. Instead of having multiple databases
on a server, we can now create only one consolidated database, the CDB,
which contains multiple pluggable databases (PDBs). And each PDB will
appear as a whole database to its users, with multiple schemas, public objects,
system tablespaces, dictionary views, and so on.

The multitenant architecture will be used to consolidate on private or
public clouds, with hundreds or thousands of pluggable databases. The goal is
to provision those pluggable databases quickly and expose them as if they
were a single database. By design, anyone connected to a pluggable database
cannot distinguish it from a standalone database.

In addition, all commands used in previous Oracle Database versions are
compatible. For example, you can run shutdown when you are connected to a
PDB and it will close your PDB. It will not actually shut down the instance,
however, because other PDBs are managed by that instance, but the user will
see exactly what he would see if he shut down a standalone database.

Consider another example. We are connected to a pluggable database and
we can’t have undo tablespaces because they are at CDB level only (we can
change this in 12.2, but you’ll learn about that in Chapter 8). Let’s try to
create one:

There are no errors, but the undo tablespaces are obviously not created.
It’s impossible to create a 100-terabyte datafile. My statements have just been
ignored. The idea is that a script made to run in a database can create an undo
tablespace, so the syntax must be accepted in a pluggable database. It’s
allowed because everything you can do in a non-CDB must be accepted in a
PDB, but it is ignored because here the undo tablespace is at the CDB level
only.

With multitenant, you have new commands, and all commands you know
are accepted by a PDB. You can give the DBA role to a PDB user, and she
will be able to do everything a DBA can do with regard to her database. And
the PDB user will be isolated from the other pluggable databases and will not
see what is at the CDB level.

CDB$ROOT
How big is your SYSTEM tablespace? Just after database creation, it’s
already a few gigabytes. By database creation, we aren’t referring to the
CREATE DATABASE statement, but running catalog.sql and catproc.sql. (Well,
you don’t call those directly in multitenant; it’s catcdb.sql but it runs the
same scripts.) The dictionary of an empty database holds gigabytes of

dictionary structures and system packages that are part of the Oracle software
—as the ORACLE_HOME binaries—but they are deployed as stored
procedures and packages inside the database. And if you put 50 databases on
a server, you have 50 SYSTEM tablespaces that hold the same thing
(assuming that they are the same version and same patche level). If you want
to consolidate hundreds or thousands of databases, as you can do with PDBs,
you don’t want to store the same data in each one. Instead, you can put all the
common data into only one container and share it with the others. This is
exactly what CDB$ROOT is: it’s the only container in a CDB that is not a
PDB but stores everything that is common to the PDBs.

Basically, CDB$ROOT will store all the dictionary tables, the dictionary
views, the system packages (those that start with dbms_), and the system
users (SYS, SYSTEM, and so on)—and nothing else. The user data should
not go in CDB$ROOT. You can create your own users only if you need them
on all PDBs. You will see more about common users in Chapter 6.

You can think of CDB$ROOT as an extension of the ORACLE_HOME.
It’s the part of the software that is stored in the database. It’s specific to the
version of the ORACLE_HOME, and it is the same in all CDBs that are in
the same version. Our 12.2.0.1 CDB$ROOT is mostly the same as yours.

PDB$SEED
The goal of a multitenant database, a CDB, is to create a lot of PDBs. More
than that, it should be easy and quick to create PDBs on demand. It’s the
architecture focused on Database as a Service (DBaaS). How do you create a
database quickly with the Database Configuration Assistant (DBCA)? You
create it from a template that has all datafiles. No need to re-create everything
(as catalog.sql and catproc.sql do) if you can clone an empty database that
already exists. This is exactly what the PDB$SEED is: it’s an empty PDB
that you can clone to create another PDB. You don’t change it, it is read-only,
and you can use it only as the source of a new PDB.

A CDB has at minimum one CDB$ROOT container and one PDB$SEED
container. You can’t change them; you can only use them. Their structure
will change only if you upgrade or patch the CDB.

Multitenant Dictionaries

One goal of the multitenant architecture is to separate system metadata from
application metadata. System metadata, common to all PDBs, is stored in the
CDB$ROOT, as are all system objects. Consider, for example, the package
definitions. They are stored in the dictionary table SOURCE$, which we can
query through the DBA_SOURCE dictionary views. In a non-CDB, this table
contains both the system packages and the packages that you create—the
packages owned by SYS, as well as the packages owned by your application
schema; let’s call it ERP. In multitenant, the CDB$ROOT contains only
system metadata, so in our previous example, that means all the SYS
packages.

In our PDB dedicated to the application, let’s call it PDBERP, the
SOURCE$ contains only the packages of our application, the ERP ones.
Let’s see an example. We are in the CDB$ROOT and we count the lines in
SOURCE$. We join with the DBA_OBJECT that shows which are the
Oracle-maintained objects (the system objects):

All the lines in SOURCE$ are for Oracle-maintained objects which are
system packages.

Now let’s have a look in a PDB:

The lines here are not for system packages, but for our own application
packages. You may have a different result, but basically this is how the
dictionaries are separated in multitenant: the metadata that was stored in the
same dictionary in non-CDBs is now stored in identical tables but in different

containers, to keep the Oracle metadata separated from the application
metadata. Note that this is not the same as partitioning; it’s more like these
are actually different databases for the dictionaries.

Dictionary Views
Do you know why we’ve queried the SOURCE$ table and not the
DBA_SOURCE, which is supposed to give the same rows? Check this out:

Same number of lines here in the CDB$ROOT. But when we connect to
the PDB,

We see more rows here. Actually, we see the rows from CDB$ROOT.
There are two reasons for this. First, we said that what is in the CDB$ROOT
is common, so it makes sense to see this from the PDB. Second, we said that
a user connected to a PDB must see everything as if she were on a standalone
database. And on a standalone database, a query on DBA_SOURCE shows
all sources from both the system and the application. It’s not the case when
you query SOURCE$, but you’re not expected to do that. Only the views are

documented, and you’re expected to query those ones.
The dictionary views in a PDB show information from the PDB and from

the CDB$ROOT. It’s not partitioning, and it’s not a database link. We will
see how Oracle does this in the next section.

When you are connected to CDB$ROOT, the DBA_SOURCE view
shows only what is in your container. But new views starting with CDB_ can
show what is in all containers, as you will see later in the chapter in the
section “Dictionary Views from Containers.”

So, physically, the dictionaries are separated. Each container stores
metadata for its user objects, and the root stores the common ones—mainly
the system metadata. Logically, from the views, we see everything, because
this is what we have always seen in non-CDBs, and PDBs are compatible
with that.

Metadata Links
Oracle has introduced a new way to link objects from one container to
another: metadata link. Each container has all the dictionary objects (stored in
OBJ$ and visible through DBA_OBJECTS), such as the system package
names in the example used earlier. But more definitions (such as the
packages source text) are not stored in all of the containers, but only in the
CDB$ROOT. Each container has a flag in OBJ$, visible as the SHARING
column of DBA_OBJECTS, that tells Oracle to switch to the CDB$ROOT
container when it needs to get the metadata for it.

Here is some information about one of those packages, which includes
the same definition in all containers, from DBA_OBJECTS in the
CDB$ROOT:

And this is from the PDB:

You can see the same object names and types, defined as Oracle
maintained and with METADATA LINK sharing. They have different object
IDs. Only the name and an internal signature is used to link them. From this,
we know that those objects are system objects (Oracle maintained), and when
we query one of them from a PDB, the Oracle code knows that it has to
switch to the root container to get some of its information. This is the
behavior of metadata links. The dictionary objects that are big are stored in
only one place, the CDB$ROOT, but they can be seen from everywhere via
dictionary views.

This concerns metadata. Metadata for your application is on your PDB.
Metadata for Oracle-maintained objects is stored on the CDB$ROOT. The
latter is static information: it’s updated only by upgrades and patches. You
can see that the benefit is not only a reduction in duplication, but also the
acceleration of the upgrades of the PDBs, as there are only links.

Figure 1-3 shows the expanded simplified dictionary from Figure 1-2 to
reveal the dictionary separation.

FIGURE 1-3. Separating system and user metadata

Data Links (called Object Links in 12.1)

There is not only metadata in the dictionary. The multitenant database also
contains some data to store at the CDB level. Here’s a simple example.
Suppose the CDB must keep a list of its containers, which is stored in the
system table CONTAINER$, which is exposed through the dictionary view
DBA_PDBS. This data is updated to store the status of the containers.
However, this data, which makes sense only at the CDB level, can be queried
from all PDBs. Let’s see how this is shared.

This is from the CDB$ROOT:

And this is from the PDB:

You can see that the view that accesses CONTAINER$ is a data link,
which means that the session that queries the view will read from the
CDB$ROOT. Actually, the CONTAINER$ table is present in all containers,
but it is always empty except in root.

Working with Containers
How do you work with so many PDBs? You begin by identifying them.

Identifying Containers by Name and ID
A consolidated CDB contains multiple containers that are identified by a
name and a number, the CON_ID. All the V$ views that show what you have
in an instance have an additional column in 12c to display the CON_ID to
which the object is related. The CDB itself is a container, identified by
container CON_ID=0. Objects that are at CDB level and not related to any
container are identified by CON_ID=0.

For example, here’s what we get if we query V$DATABASE from the
root:

And this is from the PDB:

The information may be different when viewed from different containers,
but in all cases, the database information is located at the CDB level only.
Information in that view comes from the control file, and you will see that it
is in the common ground. So the CON_ID is 0. If you are in non-CDB,
CON_ID=0 for all objects. But if you are in multitenant architecture, most of
the objects pertain to a container.

The first container that you have in any CDB is the root, named
CDB$ROOT and with CON_ID=1. All the other containers are PDBs.

The first PDB that is present in every CDB is the seed, named
PDB$SEED, which is the second container, with CON_ID=2.

Then CON_ID>2 are your PDBs. In 12.1, you can create 252 additional
PDBs. In 12.2, you can create 4,098 of them.

List of Containers
The dictionary view DBA_PDBS lists all PDBs (all containers except root)
with their status:

The status is NEW when you create it and is changed to NORMAL at
first open read/write, because some operations must be completed at first
open. UNUSABLE is displayed when the creation failed and the only
operation we can do is DROP it. UNPLUGGED is a way to transport it to
another CDB, and the only operation that can be done on the source CDB is
to DROP it.

Instead of NEW you can see the following in 12.1 only: NEED
UPGRADE indicates it came from a different version, and CONVERTING
indicates it came from a non-CDB. You’ll learn about three others, the
RELOCATING, REFRESHING and RELOCATED statuses, in Chapter 9.

That was the information from the database dictionary. We can list the
containers known by the instance, which show the open status:

In non-CDB, the MOUNTED state occurs when the control file is read
but the datafiles are not yet opened by the instance processes. It’s the same
idea here: a closed PDB does not yet open the datafiles. There is no
NOMOUNT state for PDBs because the control file is common.

Note that SQL*Plus and SQL Developer have a shortcut you can use to
show your PDBs or all PDBs when you are in the root container:

Identify Containers by CON_UID and DBID
You have seen that in addition to its name, a container is identified by an ID,
the CON_ID within the CDB. The CON_ID can change when you move the
PDB. For that reason, you also have a unique identifier, the CON_UID,
which is a number that identifies the PDB even after it has been moved. The
CDB$ROOT that is a container but not a PDB, and does not move, has a
CON_UID=1.

Because of the compatibility with databases, each container has also a
DBID. CDB$ROOT is the DBID of the CDB. The DBID of PDBs is the

CON_UID.
In addition, each container has a GUID, a 16-byte RAW value that is

assigned at PDB creation time and never changes after that. It is used as a
unique identifier of the PDB in the directory structure when using Oracle
Managed Files (OMF).

All those identifiers are in V$CONTAINER, but you can also use the
functions CON_NAME_TO_ID, CON_DBID_TO_ID, CON_UID_TO_ID, and
CON_GUID_TO_ID to get the ID of a container. A null is returned if a container
is not there. Here are some examples:

Connecting to Containers
We talked about multitenant as a way to overcome the schema-based
consolidation limitation. So how do you switch between schemas, other than
connecting directly as the schema user? You ALTER SESSION SET
CURRENT_SCHEMA.

Of course, you can connect directly to a PDB, but we will explain that in
Chapter 5 about services, because that is the right way to connect from users
or application. But when, as a CDB administrator, you are already connected
to the CDB, you can simply switch your session to a new container with
ALTER SESSION SET CONTAINER.

Here, we are connected to CDB$ROOT:

We change our current container:

And we are now in the PDB:

Transactions If you have started a transaction in a container, you cannot
open another transaction in another container.

You can leave the transaction and change the container:

But you can’t run DML that requires a transaction:

First you must return to the previous container and finish your
transaction:

And then you can open a new transaction in another container:

Cursors If you open a cursor in one container, you cannot fetch from it in
another container. You need to go back to the cursor’s container to fetch from
it:

Basically, it’s easy to switch from one container to another, but what we
do to them is isolated. Nothing is shared with the previous container state.

For example, connected to PDB1, we set serveroutput to on and use
dbms_output:

The dbms_output line was displayed. You can see that the USERENV
context shows the current container name. Now we switch to PDB2:

Nothing is displayed here. serveroutput was set for PDB1, and we have
to set it for PDB2:

Now we go back to PDB1:

No need to set serveroutput again. When switching back, we regained
the state.

From JDBC or OCI My examples were run on SQL*Plus, but any client
can do this. As long as you are connected with a user that is defined in the
root (a common user) and that has been granted the SET CONTAINER
system privilege on a PDB, you can switch the session to the PDB. You can
do it from Java Database Connectivity (JDBC) or from the Oracle Call
Interface (OCI). For example, you can have a connection pool from an
application server that will switch to the required container when connections
are grabbed. This is a way to have a common application server for multiple
database tenants.

NOTE
If you want to use some container features that are new in 12.2, such
as switching to a different character set PDB, you need to have a
12.2 client or you’ll get a ORA-24964: ALTER SESSION SET
CONTAINER error.

Set Container Trigger If, for any reason, you want to run something when a
session changes to another container, such as setting specific optimizer

parameters, you can create a BEFORE SET CONTAINER and AFTER SET
CONTAINER.

Here is how it works:

 The BEFORE SET CONTAINER created in PDB1 will be raised when you
are in PDB1 and you execute an ALTER SESSION SET CONTAINER. If
the trigger reads the container name, it will be PDB1.

 The AFTER SET CONTAINER created in PDB2 will be raised when you
have executed an ALTER SESSION SET CONTAINER=PDB2.

This means that if both PDB1 and PDB2 have before and after triggers,
changing from PDB1 to PDB2 will raise a BEFORE SET CONTAINER in PDB1
and an AFTER SET CONTAINER in PDB2.

There are two ways to work in a PDB. You can connect to it through its
services, which is described in Chapter 5, and then AFTER LOGON ON
PLUGGABLE DATABASE can be used to run some code at the beginning of the
session. Or you can SET CONTAINER, and then use the AFTER SET CONTAINER
ON PLUGGABLE DATABASE. If you want to be sure to set some sessions settings
for a user working on a PDB, you will probably define both. Note that the
word PLUGGABLE is not mandatory because of the syntax compatibility with
database behavior.

Dictionary Views from Containers
A PDB includes everything that you expect from a database, which means
that the queries on the dictionary views have the same behavior. You have all
the DBA_/ALL_/USER_ views to show metadata for the PDB objects, or
those you have access to, or those that you own. The fact that system objects
are stored elsewhere is transparent: you see system objects in
DBA_OBJECTS, system tables in DBA_TABLES, and instance information
in the V$ views, but only the rows that are of concern in your PDB.

When you are in CDB$ROOT, you have additional CDB_ views that are
like a UNION ALL of all opened containers’ DBA_ views. It’s a way for a
CDB database administrator to view all objects. For this CDB$ROOT user,
the V$ views show information about all containers.

Finally, you may want to know if you are in non-CDB or in multitenant.
The CDB column in V$DATABASE provides the answer:

What Is Consolidated at CDB Level
Sharing resources that can be common is the main goal of consolidation.
Beyond the instance and the dictionary, many database structures are
managed at the CDB level. We are not talking about datafiles here, because
they are specific to each container, and the only commonality among them is
that they must have the same character set (except when a container is
transported from another CDB, but that’s a topic for Chapter 9). Several other
files are common to all containers in a container database.

SPFILE
The database instance is common to all containers, and the SPFILE holds the
instance parameters, storing these settings for the entire CDB. The SPFILE
contains the configuration elements that cannot be stored within the database
or the control file, because they must be available before the database is
mounted.

Some parameters can be set at the PDB level (those with
ISPDB_MODIFIABLE=TRUE in V$PARAMETER). These changes can also be
persisted, but even if the syntax for such an operation is SCOPE=SPFILE, this is
for syntax compatibility only, as PDB level parameters are actually stored in
the CDB dictionary (PDB_SPFILE$). They are not stored in the PDB itself
because the parameter must be accessed before opening the PDB. We will see
later that when moving pluggable databases (unplug/plug), these parameters
are extracted into an XML file that you ship with the PDB datafiles.

Control Files
The control file references all other structures in the database. For example,
this is the only location in which the datafile names are actually stored, and in

the dictionary it is the FILE_ID alone that is used to reference them. In
multitenant, the control file resides at the CDB level and holds records for all
pluggable database datafiles. You will see in Chapter 9 that information
relating to pluggable databases that is stored in the control file will also be
exported to an XML file when a pluggable database is moved by
unplug/plug.

NOTE
When we refer to the “control file,” we are actually referring to the
control files (plural), because you can, and must, multiplex them to
protect your database. This fundamental best practice does not
change, and, if anything, the importance of database availability is
even higher in multitenant, because an outage will have impact on
multiple tenants.

While on the subject of database files, there is a parameter that controls
the maximum number of files opened by an instance, DB_FILES, which
defaults to 200. Be aware that if you create hundreds of pluggable databases,
you will very quickly reach this limit, and you will then be unable to create
new tablespaces or new pluggable databases until you restart the instance. In
multitenant, restarting the instance may mean an outage for a large number of
applications, so you want to avoid this. So don’t forget to size DB_FILES
properly when you expect your container to house several pluggable
databases.

UNDO
In 12.1, the first release with multitenant architecture, the UNDO tablespace,
is common and implemented at the CDB level. However, in 12.2, we now
also have the choice to run the CDB in local UNDO mode. If LOCAL UNDO is
ON, each pluggable database has its own UNDO tablespace and all sessions
writing data into PDB data blocks will place UNDO record information in
this local tablespace. Only the changes performed on CDB$ROOT will put
the UNDO record in the root UNDO tablespace.

In short, it is better to run in local UNDO mode if possible. UNDO
contains application data, and we don’t achieve pluggable database isolation
if we then store this in common UNDO datafiles. One reason for this
preference is that local UNDO is required for efficient flashback pluggable
database and point-in-time-recovery. We will explain this in Chapter 8.

Temporary Tablespaces
Temporary tablespaces can be created at both the CDB and PDB levels. If a
user is not assigned a temporary tablespace within the PDB in which the
session is running, and the PDB does not have a default temporary
tablespace, the session will use the CDB temporary tablespace—but this is
not recommended. A quota (MAX_SHARED_TEMP_SIZE) can be set on pluggable
database usage of the root temporary tablespace.

The CDB$ROOT temporary tablespace is normally used by sessions
connected to the root container, or from a pluggable database, when a work
area needs to be allocated for a recursive query on object linked views.

Once a temporary tablespace has been defined as the default, you can
change it to another that you have created in that PDB, but you cannot
reinstate the CDB temporary tablespace as a default after this point.

Redo Logs
The redo logs protect the instance, and because of this, they are also
common. Their main objective is to record all changes made in the buffer
cache and to ensure that those changes are persisted for committed
transactions.

The redo stream in multitenant is similar to the stream in previous
versions, except for additional information in each redo record to identify the
container. Redo format is crucial for recovery operations, and, as such,
Oracle changes this code very infrequently.

Having the redo thread cover all pluggable databases brings more
multitenant benefits to the DBA managing the CDB. In non-CDB contexts,
when you provision a new database, it takes a lot of effort and time to size the
recovery area, establish the backups, and build and configure the Data Guard
physical standby, when used. With multitenant, you do it only once, for your
CDB, because this is where functionality related to availability runs from:

your backups, your Data Guard, and your RAC configuration. Simply create
a new pluggable database and it will benefit from the same already-
configured availability: it is automatically backed-up with the CDB,
automatically created on the physical standby (note that you need Active
Data Guard for this), and automatically accessible from all RAC instances.
Again, this is because the main structure used for availability, the redo
stream, operates at the CDB level.

However, having only one redo stream may be a concern in terms of
performance. If you have ever encountered log writer performance issues,
such as long waits on “log file sync” events, then you can imagine what
happens when the Log Writer (LGWR) has to write the redo from all
pluggable databases. And the upshot is that if the LGWR cannot keep up with
the redo rate, users will be forced to wait when committing.

So, for the purpose of LGWR scalability, Oracle introduced multiple
LGWRs in 12c. LGWR is the coordinator process, and multiple slaves
(LG00, LG01, and so on) are associated with this, so that the instance redo
stream is written in parallel. Of course, RAC is still another means of
implementing parallel threads of redo. What you must keep in mind is that
tuning the LGWR and the amount of redo written is of crucial importance in
multitenant. When you consolidate, pay special attention to the performance
of the disks on which you put the redo logs.

Datafiles
The datafiles, which store the tablespace data blocks, belong to each
container, but they are also managed by the CDB. They have a unique
identifier for the CDB, which is the FILE_ID:

The concept of a relative file number was introduced along with
transportable tablespaces, so this aspect of the architecture of Oracle was
ready long before 12c. In multitenant, within a pluggable database, the
datafiles are identified by the tablespace number and the file number relative
to the tablespace (RELATIVE_FNO). Furthermore, these do not have to be
changed when you move, clone, or plug in the pluggable database, and it is
only the absolute file number (FILE_ID) that will be renumbered to ensure
that it is unique within the CDB—but that is a very quick change in the
control file and datafile headers.

Data and Metadata at CDB Level
We have explained that the dictionary related to system objects, stored in the
CDB$ROOT SYSTEM and SYSAUX tablespaces, is common and can be
accessed by the PDBs. Beyond the basic database objects (created by
catalog.sql and catproc.sql) more common information can be stored in the
root.

APEX
By default, if you install APEX (in 12.2, you can choose the components), it
is placed at the CDB level. The idea is that APEX, like the system dictionary,

houses metadata that does not need to be installed in PDB$SEED or in all
pluggable databases created. However, there is a big drawback in this
approach: you have only one APEX version in your CDB and you will have
problems if you want to plug a non-CDB running APEX 5.0, for example,
into Oracle Cloud Services, where the CDB is installed with APEX 4.2.

NOTE
This issue has been detailed by Mike Dietrich on his blog,
blogs.oracle.com/UPGRADE/entry/apex_in_pdb_does_not. The
APEX 5.0 documentation states, “Oracle recommends removing
Oracle Application Express from the root container database for the
majority of use cases, except for hosting companies or installations
where all pluggable databases (PDBs) utilize Oracle Application
Express and they all need to run the exact same release and patch
set of Oracle Application Express.”

Automatic Workload Repository
Automatic Workload Repository (AWR) collects a large amount of instance
information (statistics, wait events, and so on) from the instance views, and in
multitenant, this is done at the CDB level. Only one job collects all statistics
for all containers, and they are stored in the CDB$ROOT. This is actually the
main use case for object-link views: AWR views (those that start with
DBA_HIST) can be queried from each pluggable database but actually read
data that is stored in root.

There are two important consequences relating to this. The first is that if
you move a pluggable database, the AWR history does not follow along with
the container; instead, it remains in the original CDB. You can read the views
from the original database, or export it elsewhere. But the CON_ID that is
stored in AWR should be the container ID at the time the snapshot was taken,
so you need to check the CON_DBID to identify a specific pluggable database.
There are actually three different identifiers in each of the DBA_HIST views:

 DBID is the DBID of the CDB, same as in a non-CDB environment.

This uniquely identifies the snapshot, along with the SNAP_ID and
INSTANCE_NUMBER.

 CON_ID is the container ID that comes from the V$ views queried to
take the snapshot. Some rows are not related to any container, and so
have CON_ID=0, while others record statistics for a container object
and so take the related CON_ID at the time of the snapshot.

 CON_DBID uniquely identifies a pluggable database, in the same way
that DBID uniquely identifies a database.

The second consequence of having AWR collected at the CDB level is
that, when you run an AWR report at PDB level, it will filter only the
statistics relevant to your container, and this is exactly the same as querying
V$ views from a PDB. But you must keep in mind that you still see some
statistics that are at CDB level (those that have CON_ID=0) in the same
report. This means that, for example, you will see the amount of logical reads
done by the instance in the instance statistics section, but the details (in SQL
sections or Segment section) reveal only what is relevant to your pluggable
database. Let’s take a look at an example.

Before reading an AWR report details, we always check that most of the
SQL statements are captured, because there is no point in continuing if we
cannot go down to the statement-level detail. Here is the SQL ordered by
Gets header from an AWR report:

This shows that 89 percent of the SQL statements were captured, and we
know that we will have the detail we need when we investigate the high
logical reads issue. When the percentage is low, that usually means that we
are analyzing a report that covers a time window that is too large, and most of
the SQL statements have been aged out of the shared pool before the end
snapshot. But you can see another reason for low percentages when you run
the AWR report from a pluggable database:

You don’t see anything different here, except that only 21 percent of the
statements have been captured. You have to check the AWR report header to
see that it covers only one PDB. Actually we had two PDBs active at that
time, and here is the other one:

From one PDB, you have no way to see if all statements for that PDB
have been captured. There are no statistics such as total logical reads for that
pluggable database.

NOTE
This is the behavior in 12.1, where per-PDB instance statistics are
available in V$CON_SYSSTAT but not collected by AWR. In 12.2, they
are collected in DBA_HIST_CON_SYSSTAT, and you have similar views
from time model (DBA_HIST_CON_SYS_TIME_MODEL) and
system events (DBA_HIST_CON_SYSTEM_EVENT). In 12.2 the
AWR report uses them and the inconsistency above does not appear.

Statspack If you don’t have the Diagnostic Pack, you can’t use AWR and
you will probably install Statspack. According to the documentation
(spdoc.txt), Statspack can be installed only at the PDB level. We think that it
makes sense to install it at the CDB level as well, because you may want to
analyze CDB$ROOT activity. Each PDB from which you want to collect

snapshots will store its own statistics. Because statistics are now collected at
PDB level, the behavior is different from the behavior with AWR. We’ve
taken Statspack snapshots at the same time as the AWR snapshots in the
preceding example. The session logical reads from spreport.sql show
24,956,570 logical reads when the report is run on CDB$ROOT, and
5,709,168 (22 percent) for one PDB and 17,138,586 (68 percent) for the
other. Statspack collects statistics related with the CDB when run from root
and with the container when run from a PDB.

Summary
In this long introduction, we have explained why multitenant was introduced
by Oracle 12c in 2013. We have seen the different consolidation alternatives,
and perhaps you think that you don’t need to run in multitenant. However,
this new architecture will eventually become the only one supported, the non-
CDB being already deprecated. So even if you don’t want multiple pluggable
databases per instance now, you will have to run what we will call “single-
tenant” in Chapter 3, and you will have to administer container databases.

In addition to consolidation, the new architecture separates the
application data and metadata from the system dictionary, bringing more
agility for data movement and location transparency. This will be covered in
Chapter 9.

The next chapter will start from the beginning by creating a consolidated
database.

CHAPTER
2

Creating the Database

In Chapter 1 we introduced the new Oracle 12c Database Multitenant
option. It is interesting that we still reference this as new—the fact is,
even though it was introduced in 2013, many DBAs and organizations

have not started using this technology yet. In learning new technologies,
many DBA’s most effective approaches include starting simple. The acronym
KISS—Keep It Simple Stupid—is still in many cases the best approach. In
this chapter, we will follow such an approach to help you lay a good
foundation for the world of Oracle Database 12c Multitenant, which, as you
will see, scales in complexity rather quickly.

As with earlier versions, there are many ways to create an Oracle
Database, and some might expect that experienced, hardcore DBA would
naturally favor the command line. But you might be surprised to learn that
many of them actually make use of graphical interfaces, whether it is the
well-known Database Configuration Assistant (DBCA) or Oracle Database
Express, and Cloud Control for the larger configurations. In this chapter, we
will cover two key topics:

 Creation of the container database (CDB)

 Creation of pluggable databases (PDBs)

Creating a Container Database (CDB)
Before we dive into the CDB creation steps, we need to discuss a few crucial
introductory topics that will assist you in gaining a better understanding of
what happens when you create a CDB database with one or more PDBs. As
detailed in Chapter 1, when you create a CDB, you end up with at least two
containers: the root container (CDB$ROOT) and the seed container
(PDB$SEED).

In most Oracle configurations nowadays, two main storage options are
used for database files: Automatic Storage Management (ASM), which is
highly recommended, or the traditional file system–based storage. In earlier
versions of the Oracle Database, many system administrators were kind of
scared to use ASM; because database files were not easily viewable, they felt
they had no control over them. However, times have changed, and with
ASM’s improvements and its excellent feature set, it has now been widely

adopted. In this chapter, therefore, both options will be discussed in
conjunction with creating a CDB and PDBs. For more detail on the use and
configuration of ASM, review the Oracle documentation.

What About OMF?
Oracle Managed Files (OMF) is an option that charges Oracle with the
responsibility for database file naming, and in a multitenant environment it is
highly recommended. For those unfamiliar with OMF, this may sound
dangerous, but there is no need for alarm, because it is an easy-to-use and
proven option that can make a DBA’s life a lot easier.

Imagine creating a tablespace. Traditionally, you would have to specify
the full path and name of the datafile you are creating. But with OMF, you
can simply state that you want a file of a specific size for the tablespace, and
the naming of the file will be taken care of for you. An example of the file
structure and naming in an OMF-enabled environment is shown in Figure 2-
1.

FIGURE 2-1. Example OMF directory structure

To the uninitiated, this might take some getting used to. Note especially
the subdirectory naming for the PDB. When you’re working with OMF, a
long hash is used as a subdirectory name for the PDB datafiles, which in this
example is 2B11F0C3A0262FF6E053E902000A0D8A.

Where does this come from, and what does it mean? If you review
V$CONTAINER from the CDB$ROOT, you will notice that the value used
for this directory name is in fact the GUID value for the pluggable database.
In short, the OMF directory structure takes the following format:

Again, when using ASM, it is recommended that you use OMF. This
brings us to the next step—the creation of the CDB.

CDB Creation Options
A number of different methods are available for creating the CDB, but the
most popular—and the recommended—method is to use the DBCA. For
those interested, it is possible to create the CDB manually by running a
number of SQL statements, and this option will be outlined in the next
section.

The DBCA is an extremely powerful tool for creating databases, both via
its GUI and with its lesser known command line (CLI) option. First, let’s take
a look at creating a CDB using the GUI.

Using the DBCA GUI
Over the years, the DBCA has become a much more reliable and stable tool,
and it is a widely accepted and trusted method for creating new Oracle
databases. A number of options are available that would require a book of
their own to document, so we will focus instead on those key aspects related
to the Multitenant option.

NOTE
It is recommended that you have a default listener already
configured on the database server where you will be running the
DBCA.

The first step is to start the DBCA by issuing the dbca command to
invoke the executable located in the $ORACLE_HOME/bin directory. Once
DBCA starts, you will see the GUI, as shown in Figure 2-2.

FIGURE 2-2. DBCA step 1: Create a database

NOTE
A number of the DBCA options (such as Delete Database) will be
available only if DBCA detects at startup that the system is already
running at least one other Oracle Database.

Typical Configuration To create a new database, select the Create A
Database option, and click Next.

The next screen presents more detail (Figure 2-3) and two options:
Typical Configuration or Advanced Configuration. In most cases choosing
Typical Configuration is sufficient, but if you are more familiar with the
Oracle Database and need to configure advanced options, such as memory
allocations, choose Advanced Configuration.

FIGURE 2-3. DBCA—Typical Configuration steps

The first example discussed will show the Typical Configuration steps.
Seven steps are highlighted in Figure 2-2:

1. Provide the default Global Database Name—in this example,
CDB2.orademo.net.

2. For Storage Type, specify whether you want to use filesystem-based
storage or ASM. Here, we chose ASM.

3. The default Database Files Location is ASM disk group +DATA
(note that these disk groups must exist prior to running the DBCA).

4. The Fast Recovery Area (FRA) is updated to point to the +FRA disk
group.

5. The Administrative Passwords in this configuration will be used for
all administrative users, such as SYS, SYSTEM, and PDBADMIN
(the local administrator user for the PDB).

6. For multitenancy this is an important step: select the Create As
Container Database option, and provide a name for the single default
PDB that will be created for you.

7. Click Next to continue.

From here, the summary screen is displayed, providing an opportunity to
review the options. Click Finish to start the database creation process. You
will be presented with a progress page that updates on the stages of the
database creation process steps until complete.

NOTE
You probably noticed references to the PDBADMIN user. This is the
local admin user created during PDB creation. This user will be
assigned the PDB_DBA role by default. The PDBADMIN user and

PDB_DBA role by default have no assigned privileges.
Later in the chapter, when we create PDBs using SQL*Plus, the

ROLES clause is provided as part of the PDB creation statement.
This clause is used to specify the roles you want to assign to the
PDB_DBA role locally in the PDB. The PDBADMIN user does not
have to be called PDBADMIN, but in most cases this is the default
name. For more detail on LOCAL and COMMON users, see
Chapter 6.

Advanced Configuration If you selected Advanced Configuration in Step 2,
you’ll see additional options, and the number of steps increases from 5 to 14.
These are easy to follow, but we want to highlight Step 4, where you will be
presented with a screen similar to that shown in Figure 2-4.

FIGURE 2-4. DBCA—Advanced Configuration

Here you can specify the Global Database Name as well as the option to
create a CDB and any PDBs, as highlighted by 1 and 2. Note that you can
specify the number of PDBs to be created, and a prefix will be used if more
than one PDB will be created. You will also have the option from 12.2 to
specify if you want to use Local UNDO tablespaces for the PDBs. This is a
new feature introduced in 12.2 allowing PDBs to store their undo records in a
local UNDO tablespace. For more detail please see Chapter 8.

NOTE
In 12.1.0.x, the maximum PDBs per CDB is 253 (including the
PDB$SEED). In 12.2.0.x, the limit was increased to a maximum of
4K (4096) per CDB.

The end result is that we have a CDB called CDB1, which includes the
CDB$ROOT, PDB$SEED, and two additional PDBs, PDB1 and PDB2,
which will be based on the seed pluggable database.

NOTE
The default templates used during the creation of a database are
located in: $ORACLE_HOME/assistants/dbca/templates.

Using the DBCA CLI
Sometimes working with a GUI isn’t possible, such as when you need to
perform an installation and database creation via a remote connection and the
network bandwidth is inadequate, or the connection is extremely slow. Don’t
be alarmed, because there are options available to you. One is to perform a
silent, or unattended, installation using a response file, and a similar approach

can be followed when creating a database. Another is to use the DBCA CLI
and the -silent parameter, which invokes the same executable as the GUI
via the -silent parameter, but presents the command line alternative. This is
not a black box operation, because output is pushed to screen, and if you are
interested in the details, you can interrogate the log files generated by this
process.

NOTE
The default character set (AL32UTF8) should be sufficient for most
database implementations, but this can be adjusted, as required.

Response File Format Change There are some small differences between
Oracle 12.1.0.x and 12.2.0.x with respect to the DBCA utility, including the
use of response files. The latter actually features a new response file format,
which will be a change welcomed by many.

On review of the sample response files, you will notice that the 12.1.0.x
version of the response file makes use of grouping or sections, noted in
square brackets—for example, [CREATEDATABASE]. These are used to identify
the command being executed. This was improved in 12.2.0.x so that the
response file contains only key-value pairs, and the command to be executed
is passed to the dbca utility as an additional argument, such as dbca -
createDatabase -responseFile.

Following is an example of a response file that can be used in 12.1.0.x. It
will create a new CDB database called CDB1 with one PDB called PDB1,
using the General Purpose template. The database uses ASM as the default
storage type:

If you do not specify values for at least one of the key commands
(createDatabase, createTemplateFromDB, or createCloneTemplate) in the
12.1.0.x release response file (such as [CREATEDATABASE] as shown on line 4
of the preceding example), you will receive an error when running the dbca
command—as per the following output, which indicates that at least one of
these key commands must be configured:

DBCA, Response Files, and 12.2.0.x Using the silent option of the DBCA
—that is, running it from the command line without starting the GUI—can be
a big time-saver and is finding increased favor. And, as mentioned earlier, the
CLI for the DBCA makes use of the same dbca executable. A substantial
amount of detail is provided when executing the dbca command with the -
help argument, and in 12.2.0.x the output is better structured and easier to

read, compared to the initial 12.1.0.x release. You can add the -help flag to
provide a detailed listing for the specific command you are interested in. For
example, running dbca -createDatabase -help triggers a full and detailed
listing of the available options for this command.

Using Response Files There are two ways to use the CLI. The first is with a
response file, which is similar to using a response file for the database
software installation.

NOTE
A sample response file that can be customized and used with the
DBCA utility to create databases is provided as part of the database
software installation at $ORACLE_HOME/assistants/dbca/ and is
called dbca.rsp. Focusing on the uncommented lines is a good
starting point.

Alternatively, you can create, or save, your own response file based on
the steps you perform in the DBCA interface. You may have noticed at the
end of the configuration process an option to generate a response file based
on all your selections and input. This is a quick-and-easy way to create one of
these files to meet your requirements.

NOTE
When using a response file, you do not have to assign values to all
parameters. Most parameters have default values, which will suit
most configurations and can be used without modifications.

Let’s look at two examples of using response files to create two CDB
databases.

Example 1: Create CDB with two PDBs (ASM and
OMF)
Here, we’ll create a container database called CDB1 with two PDBs: PDB1
and PDB2. The Oracle-supplied template General_Purpose.dbc is used, and
the database will be located in ASM with OMF enabled, using disk groups
+DATA and +FRA. The key parameters specified in the response file are

 createAsContainerDatabase = true

 numberOfPDBs = 2
 pdbAdminPassword = Password12345
 pdbName = PDB

It is recommended that the passwords for the SYS, SYSTEM, and
PDBADMIN accounts conform to Oracle standards. If you do not specify
these in the response file, the user will be prompted for them on execution of
the dbca command, because they are mandatory. The values specified in the
response file are summarized as follows (in alphabetical order):

The command to execute the DBCA using the response file in silent
mode is

Here’s an example:

Example 2: Create CDB with one PDB (FS and non-
OMF)
Now let’s create a container database, CDB1, with one PDB called PDB. The
Oracle supplied template General_Purpose.dbc is used. The database uses

normal file system–based storage, without OMF. The database files will be
located in /u01/app/oracle/oradata with a FRA (recovery area destination)
located at /u01/app/oracle/fast_recovery_area. The values specified in the
response file are summarized as follows (in alphabetical order):

If the numberOfPDBs=1, then the pdbName parameter will be taken as the
actual name of the PDB. So in example 2, the PDB name would be PDB.
However, if the numberOfPDBs is greater than 1, the pdbName parameter is
used as a prefix for the PDBs that will be created. For example, if
numberOfPDBs=3, the end result will be PDB1, PDB2, and PDB3, which will
be created from the default PDB$SEED. The command used to execute the
DBCA, using the response file cdb2.rsp in silent mode is shown here:

The end result of the command is a CDB database with one PDB, located

on file system–based storage with archive logging enabled. For more details,
you can always review the log files generated under the cfgtoollogs/dbca
subdirectory located in the $ORACLE_BASE location.

NOTE
To remove a running database, such as CDB1, dbca can be used:
dbca -deleteDatabase -sourceDB CDB1 -silent. But be careful
when invoking this command on a running instance, because it will
shut it down and remove all datafiles. But the most important part: it
will remove all the datafiles and it will remove any known backups.
This might not be your desired outcome when executing this
command.

Using the DBCA CLI Without Response Files Instead of using a response
file, which contains all the options, you can specify the key-value pairs as
arguments to the dbca executable. Let’s take the first example from earlier to
see how this works. Using the values in the response file, we can rewrite this
as follows. (To make it easier to read, the format with the \ line delimiter is
used.)

This method of creating a CDB database works in both 12.1.0.x and
12.2.0.x; however, a small number of options such as -enableArchive and -
useOMF are not available in 12.1.0.x. This method is a quick-and-easy way to
establish container databases along with a number of required pluggable
databases.

Using SQL*Plus
If you are looking at creating customized configurations, particularly when
certain database options are not required in the database, using SQL*Plus
might be a good option. However, before doing this, you should first take
note of the options provided by the DBCA—and this is where the DBCA CLI
can be extremely useful. You can actually use the -generateScripts option
to let the DBCA create scripts for you, and then review and update them
before executing them manually. If we take the earlier CDB1 database
creation example, you would add -generateScripts and scriptDest to the
command, which will result in the database creation scripts being created in
the /u01/app/oracle/admin/CDB1/scripts directory:

You can then review or update these settings and remove options, for
example, if needed. Then simply execute the CDB1.sh master script created
in the designated scripts folder to invoke the process. This is an easy way to
prepare the database creations scripts, but let’s review some of the manual
processes at a high level.

The steps to create a CDB database using SQL*Plus may look similar to
what you would have performed for non-CDB databases, but a closer look at
the details reveals a number of new options—or steps—to be performed
when creating a CDB. At a high level these are as follows:

 Create a password file - orapw<SID>.

 Create a parameter file - init<SID>.ora.
 Set the parameter enable_pluggable_database=TRUE.
 Start the new instance using the parameter file.
 Execute the CREATE DATABASE statement.
 Include the ENABLE PLUGGABLE DATABASE clause.
 Create the database catalog and options required.

The following example will take you through the high-level steps to
create a CDB manually using SQL*Plus.

Example: Creating a CDB Using SQL*Plus In this example, a CDB
database called CDB2 will be created using SQL*Plus. The database will be
using Oracle ASM as default storage with disk group +DATA as the primary
location for the database files and disk group +FRA for the recovery area.

Step 1: Prerequisite steps
If you are using role separation when installing your Oracle Database

software, which means the Grid Infrastructure (GI) is installed as a different
user, such as grid, and the database software is installed as the oracle user, for
example, and if you have not created any databases yet, ensure that you set
the correct permission on the Oracle executable inside the Oracle Database
software home to allow access to ASM storage. In most cases, the ASM disks
would be owned by the grid user with the default group set as asmadmin.

Oracle has made this easier for you by introducing the setasmgidwrap in
11g, and it is still available and used in Oracle Database 12c. This utility is
located in the GI home and should be executed while logged in as the grid
user. An example of the command to be executed is shown next:

As part of the prerequisite steps, make sure you create the required
directories, as follows:

If you are using ASM storage create the required base directory for the
database in the ASM disk groups. This can be done in a number of ways, one
of which is to run these two SQL statements while connected to the ASM
instance:

Step 2: Create a basic parameter file
Remember that some values can easily be adjusted following the creation of
the CDB, and therefore in most cases it is recommended that you start with a

basic parameter file. Then, once you have the database up and running, you
can adjust the values as required.

Because we are creating a CDB database, it is important to ensure that the
enable_pluggable_database=TRUE is specified in the parameter file. As
mentioned earlier, this database will be making use of ASM. Note that the
control file parameter values will be added once the database is created. The
parameter file initCDB2.ora is created with the options that follow and saved
in the $ORACLE_BASE/admin/CDB2/pfile/ directory.

Step 3: Update /etc/oratab file
This step is optional, but if you are using UNIX-based systems, updating the
oratab file is highly recommended. This will make it easy for you to switch
between database environments, especially if you have multiple Oracle
Database software installations on the same system.

On Oracle Linux, the oratab file is located at /etc/oratab. The following
entry is added for the CDB2 database:

Once you have added the entry, you can make use of the oraenv utility to
set the correct environment. Run the command . oraenv, and when asked to
provide the ORACLE_SID, specify CDB2. You will notice that the required
environment variables such as ORACLE_HOME will now be set. Here’s an
example:

Step 4: Set the correct environment for the catcon.pl
script execution
This brings us to an interesting point: the catcon.pl script. This script will be
discussed in more detail at the end of this chapter.

NOTE
As of 12.2.0.x, the default Perl version that is shipped with the
Oracle Database software is 5.22.

The following commands are executed to set the correct PATH and
PERL5LIB environment variable values:

Step 5: Create a password file
There are a few new options introduced in Oracle Database 12c, including a
new password file format:

Step 6: Start the Database instance in nomount state
with pfile
Start the database using the parameter file created in Step 2 in a nomount
state:

We now get to the CREATE DATABASE statement, and because we are using
OMF, there is no need to specify datafile names and locations. The key words
to notice are ENABLE PLUGGABLE DATABASE.

If you’re using non-OMF, the SEED FILE_NAME_CONVERT parameter can
be used to specify a location for the PDB$SEED datafiles—here’s an
example:

NOTE
When you’re creating a CDB database, always make sure you
specify high enough value for MAXDATAFILES.

When executing the CREATE DATABASE statement, you can ignore the
following error: “ORA-06553: PLS-213: package STANDARD not
accessible.” This occurs because catalog objects have not been created yet.

Notice the control files created after the CREATE DATABASE statement.

You will need to update the parameter file to include their location and
names. Use show parameter control_files to obtain the created control
file names. In this example, the control files were

and

The following can be used to add the control file names to the parameter
file:

NOTE
The SEED pluggable database (PDB$SEED) is created as part of
the CREATE DATABASE statement. The sql.bsq is executed, which will
run dcore.bsq twice—once for the root container and once for the
SEED container. This was noted when we reviewed the alert log
during database creation and reviewed the dcore.bsq script.

Step 7: Add default USERS tablespace
Here’s how to add a default USERS tablespace to the CDB$ROOT:

Step 8: Open the PDB$SEED pluggable database
We are now getting to one of the interesting parts—the SEED database. To
enable you to open or close the SEED database, you have to alter the session
and set _oracle_script=true;. Once this is done, you will be able to close
and then open the SEED database:

Once this is done, both the ROOT and SEED containers will be open
read/write, allowing you to continue creating the database catalog and
loading the required options.

Step 9: Create catalog and load options—catcdb.sql
The next step is to run the catcdb.sql script located in
$ORACLE_HOME/rdbms/admin. This script will make use of the catcon.pl
script and will create the catalog and load the default options.

NOTE
The catcdb.sql script was missing in the initial 12.1.0.1 release and
was later added as part of the pat set updates—12.1.0.1.4 DB PSU
and higher.

The catcdb.sql script can be run as follows (using the SYS user):

This script can take a long time to run. It will ask for the SYS and
SYSTEM users’ passwords and run the required scripts to create the catalog
and load the default options. If you do require or want to customize the CDB
options loaded, you can use the catcon.pl script to create the catalog and load
the required options. The bare minimum recommended (options) for a CDB
environment is to run the catalog.sql, catproc.sql, and catoctk.sql scripts. An
example execution of one of these scripts is shown here:

These are the minimum recommended options, but for most
configurations, it is highly recommended that you use the catcdb.sql script
and load all the default options such as Oracle JVM and Oracle Text.

NOTE
If you want more information on loading only certain options,
review MOS note 2001512.1

Step 10: Lock/expire all unused accounts (optional)
From a security point of view, it is recommended that at this stage you lock
all accounts that will not be used. This should be done in the CDB$ROOT as
well as the PDB$SEED. To perform these tasks on the PDB$SEED, follow
these high level steps:

Next, run the required commands to lock unused users in the
CDB$ROOT, followed by locking the required users in the PDB$SEED as
well. This can be done by first setting the container to PDB$SEED:

Once the required commands to lock unused users in the PDB$SEED
were executed sucessfully, you can set the container back to CDB$ROOT:

You can also close the PDB$SEED at this stage if required:

This gives you some insight into how you can customize the PDB$SEED
pluggable database.

Step 11: Create a spfile from the pfile created in Step 2
One of the final steps is to create a server parameter file (spfile) from the
parameter file you created in step 2. This is the command:

The spfile can also be created inside ASM:

In this example, the end result is a spfile being created in
+DATA/CDB2/PARAMETERFILE/ spfile.268.903390805.

Step 12: Recompile all invalid objects
This is a highly recommended option and should be a well-known step to
most DBAs. This script we are referring to is utrlp.sql. It is recommended
that you make use of the catcon.pl script to ensure that you run this against
the CDB$ROOT as well as the PDB$SEED, which at this stage is the only
pluggable database in the CDB2 database.

Step 13: Optional—Add the database to Oracle Restart
This last step is optional. If GI is installed, you can make use of Oracle
Restart. This enables the option to start or stop the database as part of a
system restart. If offers a number of other advantages, but these are probably
the most well-known reasons for using Oracle Restart.

The srvctl command is used to perform these tasks:

Step 14: Create a pluggable database
At this stage, we haven’t created a CDB database, which includes the root
and the SEED pluggable database. Before getting into the details in the next
section, we can list the basic CREATE PLUGGABLE DATABASE statement here for
completeness of the example:

This will create the PDB called PDB1 based on the PDB$SEED PDB.
Once created, the PDB will be in a mounted state. To open it, execute the
following:

The next section continues with the options for creating the PDB. Note
that if you were following the DBCA options discussed earlier, you can
create PDBs as part of the CDB creation. This is one reason why using the
DBCA is highly recommended and used by most DBAs: it takes away most
of the complexities and helps keep it simple.

Creating a Pluggable Database
Instead of jumping straight into the PDB creation process, let’s take a look at
the surroundings and context before diving into the details.

In a minimal Oracle PDB creation, you end up with only the
CDB$ROOT and PDB$SEED PDBs. This is probably the best way to start.
Why? Imagine, for example, that you are planning to create 50 PDBs and
want them all to look exactly the same. You could create a simple golden
image first, and then, when you need more databases, simply clone the
golden image to create any new ones.

You can create new pluggable databases using a variety of tools:

 SQL*Plus

 Database Configuration Assistant (DBCA)
 SQL Developer
 Oracle Enterprise Manager Database Express
 Oracle Enterprise Manager Cloud Control

In Chapter 9, we will cover plug-in and plug-out, conversions from non-
CDB to PDB, cloning, and a number of other options used to create
pluggable databases. We will also discuss the new proxy PDB option
introduced in release 12.2. In this chapter, the focus will be on helping you
get started in creating PDBs using two basic methods:

 Create a new PDB from the CDB SEED (PDB$SEED) This is used
mainly for new configurations. A PDB is created based on the
template SEED database called PDB$SEED, which resides inside the
same CDB. This method is fast, easy, and seems almost instantaneous.

 Clone a PDB within the same CDB (also known as the local clone
method) This can be extremely useful in many scenarios, such as
cloning an application PDB to create a secondary PDB on which you
can test upgrade scripts prior to executing them the production PDB.
There are a number of requirements when using this method,
including that the cloned PDB name must be unique within the same
CDB.

Create a New PDB from PDB$SEED
This method, as illustrated in Figure 2-5, is a quick and easy way to create a
PDB based on PDB$SEED. During this process, the new PDB is generated
by creating a copy of the PDB$SEEED, which should be in read-only mode.

FIGURE 2-5. Create A PDB from PDB$SEED

When using OMF, the process is simplified, and a basic CREATE
PLUGGABLE DATABASE command like the following can be used to create a
PDB from the CDB SEED:

The end result of this statement is the creation of PDB1, a copy of the
CDB SEED—PDB$SEED. The default PDB administrator is created as
PDB1ADMIN, and the default role, assigned locally to the PDB_DBA role,
is CONNECT. A number of additional clauses can be used with the CREATE
PLUGGABLE DATABASE statement and provide the ability to specify a number
of customization options for the newly created PDB. Some of the key clauses
include these:

 AS APPLICATION CONTAINER

 AS CLONE
 AS SEED
 CREATE_FILE_DEST
 DEFAULT TABLESPACE
 FILE_NAME_CONVERT
 HOST
 PORT
 NOCOPY, COPY, MOVE
 NO DATA
 PARALLEL
 ROLES
 SNAPSHOT COPY
 SOURCE_FILE_DIRECTORY
 SOURCE_FILE_NAME_CONVERT

 STANDBYS
 STORAGE
 TEMPFILE REUSE
 USER_TABLESPACES

NOTE
Throughout this book we will reference a number of these clauses,
but for full details on each, refer to the “Oracle Database SQL
Language Reference” for Oracle Database 12c Releases 1 and 2.

The CREATE_FILE_DEST clause can be specified as part of the create
statement if you want to overwrite the default OMF location, which is
specified by the CDB’s DB_CREATE_FILE_DEST instance parameter. For
example, if the requirement is to place the PDB on a different ASM disk
group called +PDBDATA, the CREATE PLUGGABLE DATABASE statement can
be adjusted as follows:

The end result will be that an OMF file structure will be created in the
disk group +PDBDATA. So, for example, after the command is executed,
PDB1 was created with CON_ID=4:

If OMF is not used, the FILE_NAME_CONVERT parameter must be included
when creating a new PDB from the CDB SEED. Creating a new PDB1 in a
CDB, which does not make use of OMF, is illustrated next:

The end result here is that the new PDB is created as a copy of the
PDB$SEED, and its files are located in the directory
/u01/app/oracle/oradata/CDB2/pdb1.

Before moving on to the next section, let’s have a look at a slightly more
complex case using a number of the clauses available in the create
statement:

Breaking down the example, observe the following:

 We are creating a new PDB called PDB2.

 The PDB admin user is called PDB2ADMIN and a password is
supplied.

 The CONNECT role is assigned to the local PDB_DBA role.
 The FILE_NAME_CONVERT clause is specified to ensure that the new

PDB subfolder pdb2 is used.

 A new default permanent tablespace is created for the new PDB, the
data file name is specified, and the size of this file is 10M with the
option to grow to 20G.

 The STORAGE clause is used to limit the size of the PDB to a
maximum size of 100G, and only a maximum of 5G shared temporary
space can be used by this PDB.

Create a New PDB Using the Local Clone
Method
The second method is creating a new PDB using the clone option (see Figure
2-6) from a local PDB located in the same CDB. This method is also referred
to as creating a local clone.

FIGURE 2-6. Create PDB2 from PDB1 (clone PDB1)

When using this approach, take note of the following:

 If using version 12.1.0.x, the source PDB must be in a read-only state.
(As of 12.2.0.x, the source PDB can be open, as long as the CDB is in
ARCHIVELOG mode with local UNDO enabled.)

 Each PDB in a CDB must be uniquely identifiable.
 Once the clone is complete, the new PDB must be opened read-write

at least once to allow further operations.

When using the local cloning process, the datafiles of a source PDB
(which is in a read-only state in 12.1.0.x) are read and then copied to a new
uniquely identifiable PDB.

Performing a local clone in an OMF environment is easy and can be done
without any additional clauses being specified. For example, to create a new
PDB5 database as a clone from PDB1 in CDB1, we can execute the
following two statements, cloning and then opening the new PDB in read-
write mode:

When using a non-OMF environment, the create statement needs to
include the additional FILE_NAME_CONVERT clause, as follows:

Create a PDB Using SQL Developer
As mentioned in a previous section, a number of tools can be used to create
PDBs. One of the utilities that is growing rapidly in popularity, and we highly
recommend it if you have not tried it, is Oracle SQL Developer (Figure 2-7).

FIGURE 2-7. Oracle SQL Developer

This example will use SQL Developer to create a PDB called PDB1 from
the CDB1 SEED.

1. Log into the CDB (CDB1) as the SYS user by establishing a
connection to the database under the DBA option on the bottom right
of the main SQL Developer screen. Once connected, various
administration options and areas will be listed, with the first one
being Container Database. In this example, as shown in Figure 2-7,
no PDBs have been created, so the CDB1 database contains only
CDB$ROOT and PDB$SEED.

2. Right-click Container Database, and you will be presented with a
number of options, as shown in Figure 2-8. Select Create Pluggable
Database.

FIGURE 2-8. Create the PDB.

3. In the next screen, add a new PDB name, Admin Name, and
Password, and specify any storage requirements. As shown in Figure
2-9, a number of options are available with regard to the storage
configuration. In the example, we will leave them set to the defaults,
supplying only the new PDB name PDB1, and the admin username
and password. As OMF is used in this configuration, the File Name
Conversions are set at the default, None.

FIGURE 2-9. Create PDB properties.

4. Optionally, review the SQL tab shown in Figure 2-10.

FIGURE 2-10. Review the SQL statement.

5. Click Apply and the new PDB will be created. If you now refresh the
screen you will see that the new PDB1 is displayed under the
Container Database folder. As shown in Figure 2-11, when you select
PDB1, more information about the PDB is displayed on the right side
of the screen. We can see that the PDB is currently MOUNTED and
not yet open read-write.

FIGURE 2-11. Review the PDB status.

6. Open the newly created PDB read-write by selecting and right-
clicking the PDB. Choose Modify State, and a new screen will enable
you to set the PDB to a specific open mode (state)—see Figure 2-12.

FIGURE 2-12. Modify the PDB state.

7. Choose the required state from the State Option drop-down list
(READ WRITE, READ ONLY, RESTRICTED), and click Apply.

Create a PDB Using the DBCA
You can also use the DBCA to create new PDBs. As with the creation of
CDBs, there are two options for doing this: the GUI or the CLI.

When using the DBCA GUI, you are presented with the option of
creating a PDB, along with other options. Figure 2-13 shows these options on

the DBCA opening screen.

FIGURE 2-13. DBCA—Manage Pluggable Database

Choose Manage Pluggable Databases and you will be guided through a
eight-step process to create a new PDB.

Using the DBCA is a straightforward method in which you click through
a number of screens and provide basic input required to create a new PDB.
But if you are looking at creating a new PDB from the CDB SEED, using
SQL*Plus, SQL Developer, or the DBCA CLI (shown next) might be a much
faster way to achieve this.

When using the DBCA CLI, you can use the -
createPluggableDatabase command option. As mentioned earlier, using the
-help keyword with this option will display all the available arguments.
Following is a basic example that demonstrates the creation of a PDB
database called PDB9 in a CDB called CDB1, which uses ASM and OMF:

Create a PDB Using Cloud Control
Another option for creating ODBs is Enterprise Manager Cloud Control.
Using this method is straightforward, because the tool will guide you through
the process. From the Oracle Database drop-down menu path, navigate to
Provisioning, and then select the Provision Pluggable Databases option. This
will start the process of creating a PDB. Figures 2-14 and 2-15 show the start
of the wizard-driven process that assists in creating a PDB.

FIGURE 2-14. Choose Provision Pluggable Databases

FIGURE 2-15. Creating a new PDB

For more information on using Cloud Control, refer to the online
documentation for EM Cloud Control 13c.

Using the catcon.pl Script
Imagine that you have a CDB with 100 PDBs, and each database is used for
the same application, but by 100 different customers, so that each has its own
copy of the data. These might be production customers, or perhaps the end
customer is 100 developers, again each with his or her own copy of the
application database (PDB). The application vendor issues an update script to
be executed against every PDB to upgrade to the latest application version.

This entails running a single script, which could be either basic or
complex, on each of these PDBs. Needless to say, this can be a time-
consuming job, perhaps alleviated only by writing some clever additional
scripts to assist with the process. But before you launch into such efforts, the
good news is that this is no longer necessary, because Oracle Database 12c
provides a Perl-based script that can assist with precisely these types of
operations!

It is to be expected that some DBAs may be reluctant to use this script,
but you can be confident that this is a well-tested method and piece of code.
Furthermore, if you look closely at the DBCA and the scripts it invokes
against a CDB, you will notice that Oracle has actually implemented the use
of the catcon.pl script in its own processes. This is now a critical component
under the hood of the DBCA, and it is key in the process of creating and
upgrading Oracle databases.

Before we look at some examples, let’s first highlight some of the key
requirements, along with a summary of the commands and arguments, used
by the catcon.pl script. Perhaps most importantly, before executing this
script, ensure that you update the PERL5LIB and PATH environment variables,
and both of these should include the $ORACLE_BASE/rdbms/admin path.
Here’s an example:

Once these are set, you are ready to begin using the catcon.pl script. The
next consideration is the key input flags used by this script. You need to be
aware, first of all, that there are two mandatory argument requirements:

 -b log-file-name-base The first option -b takes a parameter that
specifies the base name that will be used for the log files that will be
generated when the catcon.pl script is executed.

 --<sqlplus-script> The second option is the name of a SQL*Plus
script that should be executed.

Or
 --x<sql-statement> The second option can be a standalone SQL

statement.
Other key arguments for the catcon.pl script include these:

 -d Directory where script to be executed is located

 -l Directory to be used for spool files
 -c Container(s) in which scripts/SQL are to be executed
 -C Container(s) in which scripts/SQL are not to be executed
 -u Username/password (optional) to run user-supplied scripts

(defaults to / as sysdba)
 -w Environment variable that will hold the user password for user

specified with -u
 -U Username/password (optional) to run internal tasks (defaults to / as

sysdba)
 -W Environment variable that will hold the user password for user

specified with -U
 -e Sets echo on while running SQL*Plus scripts

For more detail on the options available, execute the catcon.pl script
without any options specified to generate a full usage listing and description
of each.

So, for example, to run a script called xyz.sql in all PDBs except
CDB$ROOT and PDB$SEED, you would enter the following:

Summary
This chapter covered the basics to get you started with Oracle Database 12c
Multitenant. It detailed the creation of the CDB as well as one or several
PDBs. However, there is a lot more to multitenant. What is clear is that some
of the benefits and advantages of using multitenant are becoming apparent—
especially the ability to create a PDB in a few seconds and the flexibility it
can bring to provisioning.

But at this stage you probably have more questions. Should you stay with
the old architecture, or move to multitenant? You may not be sure that you
can even move to multitenant, but, if possible, how is it done? And what if
you are using Standard Edition (SE, SE1 or SE2)—is multitenant even an
option? Or perhaps you are using Enterprise Edition and cannot wait to get
your hands on the new technology—did you know it is an additional licensed
option? The next chapter will assist you in answering these questions, and
much more.

CHAPTER
3

Single-Tenant, Multitenant, and
Application Containers

In the previous chapter we detailed how to create a container database, an
indispensable foundation of the multitenant architecture. However, at this
point you may be wondering whether multitenant is for you. Perhaps you

have heard the term “multitenant option,” which suggests that additional
licensing is required, or you exclude yourself because you are running Oracle
Database Standard Edition. On the other hand, you are also aware that the old
architecture, known as non-CDB (non–container database), is now
deprecated. So what should you do?

These are important questions and concerns that we will consider before
going on to describe the multitenant features in detail. Of course, to describe
what is available with the different editions and options, we will make
mention of specific features—but don’t worry, because we will return to
address the features thoroughly in later chapters.

Multitenant Architecture Is Not an
Option
Let’s make it clear from the get-go: the multitenant architecture is available
in 12c for all editions, with no additional licensing option required. The main
characteristic of multitenant is the separation of dictionaries: system metadata
and system data are in CDB$ROOT, whereas user data and metadata are in a
pluggable database (PDB). This new architecture is defined at the database
creation stage with ENABLE PLUGGABLE DATABASE. It is available at no
additional cost for the Enterprise Edition or Standard Edition. At the time of
writing, there is no XE edition for 12c, but we expect that when it is released,
it will be multitenant as well.

You need to be aware of one limitation regarding multitenant: You
cannot create more than one PDB per CDB unless you have purchased a
multitenant option license. This means that without purchasing the option,
your multitenant database has at maximum one tenant—it is a single-tenant
configuration. Although the multitenant architecture was obviously
introduced with the multitenant option in view (hence its name), it is also
available and usable without this.

If you don’t intend to purchase the multitenant option, or if you are using
Standard Edition, you may think that you don’t need to delve into this new

architecture and acquire new skills for its administration. But you need to
rethink this approach. In this chapter we will explain the advantages of using
a single-tenant database, but before we get to this, there is one fundamental
reason to move ahead with it.

Non-CDB Deprecation
Chapter 1 introduced multitenant as a major change in the Oracle Database.
There are likely scores of places in the Oracle Database code where the
developers had to introduce additional operations for the multitenant context,
but the existing code for non-CDB is still there. Obviously, as the software
evolves in the future, new features will be implemented on the new
architecture as a priority. The old architecture is still supported, so you can
create non-CDB databases in 12c and obtain support and fixes, but if you
want to benefit from all the latest features (and innovation of development
focus), then it is recommended that you move to the multitenant architecture.
This is exactly what deprecation means, as it relates to the non-CDB
architecture, and the “Oracle Database Upgrade Guide” is clear that
“deprecated features are features that are no longer being enhanced but are
still supported for the full life of the release.”

Is it bad to use deprecated features? Absolutely not! But it’s a bad idea to
completely ignore new features that are introduced to replace the deprecated
ones. For example, when you start work on a brand-new project, the usual
recommendation is to avoid using deprecated features, because you want to
benefit from all the latest features available, and because deprecated features
may become desupported in the foreseeable future. However, if you are
upgrading a current application that will likely exist for only a few more
years, you probably just want to keep it as it is, without major changes.

For multitenant, the same principle holds, and you probably won’t move
all your existing production databases to multitenant architecture when
upgrading to 12c; instead, you’ll retain some of them as non-CDB. Still, it is
a good idea that you begin to learn about and create CDB databases, perhaps
for a test environment to begin with, so that you build your familiarity with
multitenant. With this approach, you have time to learn and adapt your scripts
to this new architecture, not because you need it immediately, but because it’s
sure to be in your future.

Our message about the non-CDB deprecation is this: Don’t worry; the

non-CDB that you know will still be around for years, and you can stay with
it as long as you are not comfortable with multitenant. It is still supported in
12c and will probably continue to be for several future releases. But that
should not prevent you from learning and trying out multitenant on
noncritical databases.

Noncompatible Features
Another reason to keep the non-CDB architecture for your database is to
make use of one of the few features that is not yet supported in multitenant.
There are two possible reasons for such a scenario:

 The feature/functionality itself was already deprecated when
multitenant arrived, so it has not been enhanced to work in a CDB.
This is the case, for example, with Oracle Streams. Oracle has
deprecated this and recommends using an additional alternative
product, Golden Gate. Oracle Streams is still supported in 12c, but
only with the non-CDB architecture. Note that alternatives will be
covered in Chapter 13.

 Some new features have been developed independently of multitenant
and may not be immediately available in CDB. That was the case with
Information Lifecycle Management features (Heat Map and
Automatic Data optimization), which arrived in 12.1, but only for
non-CDB. This limitation has now been removed with the release of
12.2. Another example is sharding, a new feature in 12.2, which is not
compatible with multitenant at the time of writing. Even features that
are available in multitenant may be available only at the CDB level.
This is the case with Real Application Testing in 12.1, for example,
which cannot be used at the PDB level, although this limitation has
been overcome with the release of 12.2.

NOTE
At the time of writing, features such as Change Notification,

Continuous Query Notification, and Client Side Result Cache are
not yet available for a CDB in release 12.2.

Single-Tenant in Standard Edition
In the Standard Edition, you don’t have access to the multitenant option that
allows for more than one user PDB; this is an inherent limitation of this
edition. Furthermore, in the Standard Edition, features that are not available
are disabled at installation time. For example, the following shows a
container database with one pluggable database, PDB, in addition to the seed:

Creating more pluggable databases is explicitly disallowed:

The maximum number of PDBs in a Standard Edition CDB is two: one
PDB$SEED (that you are not allowed to change except for modifying the
undo tablespace) and one user PDB.

Data Movement
Given the limited features available in the Standard Edition, you may ask if
it’s better to have a single-tenant CDB rather than a non-CDB. When you

create a CDB, you immediately see the overhead: three containers for only
one database, which means more datafiles to store the CDB$ROOT and the
PDB$SEED. Multitenant is designed for consolidation, but here we see the
opposite, because each database uses more space. But you must remember
that multitenant is also beneficial for agility in data movement, and this is a
great feature even for single-tenant.

There are three ways in which to transport data. The first is a very
flexible, but very slow, method: logical transport through Data Pump. Data is
extracted by Data Manipulation Language (DML), target tables are created
by Data Definition Language (DDL), rows are inserted by DML, and then
indexes are rebuilt. When you want something faster than this, you can use
transportable tablespaces, where data is shipped physically with the datafiles
and only metadata is created logically. This is generally quick, except when
you have thousands of tables, as many enterprise resource planners (ERPs)
do, and it still takes considerable time to create those tables, even though
most are empty. Note, however, that the transportable tablespaces’ import
functionality is not available in Standard Edition.

In multitenant architecture, the user metadata is stored separately from
the system metadata. Each PDB has its own SYSTEM tablespace that
contains this user metadata only, meaning that it can be transported
physically. This is a key feature that PDBs provide: the ability to transport by
unplug/plug. This mechanism is even superior to transportable tablespaces,
which is why Oracle product manager Bryn Llewellyn calls it the “third
generation of Data Pump” in his Oracle multitenant white paper. The really
good news is that plug/unplug operations are allowed in the Standard Edition
and in remote cloning, so you can clone a PDB into a new CDB with a simple
command.

Thanks to the agility of PDBs, the small overhead of the CDB structure
pales against the ease and efficiency of database movement and cloning
operations across servers and versions. This more than makes up for the
missing transportable tablespaces functionality in the Standard Edition.

Security
Multitenant has been developed to cater to large numbers of PDBs, such as in
cloud environments, and for this reason, many new security and isolation
features have been introduced. We will cover those features in Chapter 6, but

some of them also are very interesting from the single-tenant perspective, and
perhaps the best example is the ALTER SYSTEM lockdown. In a developer
database, you may be tempted to give ALTER SYSTEM privileges to the
developers in case they want to test new settings, kill their own sessions, and
the like. But this privilege is definitely too broad and powerful, as with
ALTER SYSTEM you can basically do whatever you like on the system.
With the new PDB lockdown profiles you can, alternatively, grant ALTER
SYSTEM and enable or disable exactly those operations and access to
parameters you deem appropriate.

Lockdown profiles and OS credentials are also very interesting for those
applications in which the application owner must be granted powerful
privileges. In multitenant, you can give the CREATE DIRECTORY privilege
and constrain the absolute path where the PDB users (even the DBA) can
create a directory. Multitenant architecture brings a separation of roles
between root and the PDB, and you will appreciate this even in the Standard
Edition.

Consolidation with Standard Edition 2
Because you can have only one PDB per CDB, you will probably have a
number of CDBs on a server. Even among different CDBs, each PDB must
have a unique name because, as you will see in Chapter 5, its name will be a
service registered to the listener, and you may not want one listener per CDB
in this context. Take care when naming CDBs, because you may be tempted
to differentiate them with a trailing number, but it is recommended that you
ensure that the ORACLE_SID remains unique for each server even when
ignoring trailing numerics. Figure 3-1 shows the warning displayed in the
Database Configuration Assistant (DBCA).

FIGURE 3-1. Warning when only suffix numbers differ in ORACLE_SID

This advice probably results from Real Application Clusters (RAC)
considerations, where the database name includes an instance number suffix.
And remember that in Standard Edition 2, you can have high availability,
because RAC is still available on a two-socket total cluster.

Because several CDBs are on the same server, you don’t want one
instance to use all the CPU available. Standard Edition 2 limits each database
to run, at maximum, 16 user processes on CPU, but you can lower this by
decreasing the CPU_COUNT parameter. This instance caging was not available
in the Standard Edition before 12.1.0.2, but it is now. It’s a side effect of the
new SE2 limitation that we can turn to our advantage to ensure that critical
databases have enough resources.

Another consideration with several single-tenant CDBs is the overhead of
having one PDB$SEED for each CDB. Because PDB$SEED is needed only
to create new PDBs, you might surmise that it is not needed after you have
created your PDB. Although you may be tempted to drop it, you must
remember that dropping this is not a supported operation. However, there is
something you can do to avoid to backing up PDB$SEED every day, and that
is to configure BACKUP OPTIMIZATION ON, so that it will be skipped as any
read-only tablespace. Just be careful that you don’t have an external
expiration policy set that is shorter than the RMAN one if you do this.

We hope that we have convinced you that multitenant is also important in

the future of Standard Edition. And even if it seems like a paradox at the
outset, you can also consider consolidation with Standard Edition 2 alongside
single-tenant agility.

Single-Tenant in Enterprise Edition
If you are using the Enterprise Edition without the multitenant option, you
can, and should, run single-tenant container databases. If you haven’t read the
preceding section about the Standard Edition, you should do so now, because
all that has been said there is relevant for Enterprise Edition, and we will only
detail here what is possible specifically in Enterprise Edition.

As a sample, here is an operation that can be done in multitenant that you
cannot do in a non-CDB:

In non-CDB, or in a CDB at root level, when you close the database, you
have to shut down the instance. Here, the statements have been run within a
PDB and the shutdown closes only the PDB, but the instance, which is
common, is still up. Then it is possible to open the PDB again. You can open
and close a PDB as many times as you want without restarting the instance.
This may sound inconsequential, but when you think about operations that
require mount mode and a closed database, you soon realize its value.

Flashback PDB
The flashback database feature in the Enterprise Edition can revert the state
of the database to a previous point in time; this was available only at the CDB
level in 12.1. But with the release of 12.2, you can flashback a PDB—this
will be covered in Chapter 8.

For now, let’s consider a test database in which the developers perform
continuous integration tests. They often need to revert to the initial data
before each run, but a restore or Data Pump import can take a long time to
complete. The quickest way to resume the same set of data is to create a

guaranteed restore point for the initial state and execute flashback database
between each run. This is a fast operation except when you have to restart the
instance. But in multitenant, as outlined in the previous section, this is not
required, and you can now close, flashback, and open the database in mere
seconds, which makes the operation possible to run hundreds or thousands of
times.

Maximum Number of PDBs
With the Enterprise Edition, you must be careful when you create a PDB,
because creating more than one PDB will activate the usage of the
multitenant option. If you haven’t licensed this option, you must prevent this
from happening. There are no easy ways to achieve this in 12.1, but 12.2
introduced the “max_pdbs” parameter which, when set on CDB$ROOT, is
the maximum number of user PDBs allowed. It defaults to 4098 in Enterprise
Edition but should be set to 1 when the option has not been purchased.

In the Enterprise Edition you must monitor the usage of features to be
sure that only licensed options are used. The feature name of CDB is “Oracle
Multitenant” (or “Oracle Pluggable Databases” in 12.1.0.2 because of Bug
20718081).

Figure 3-2 shows the Enterprise Manager Database Express interface,
which indicates that multitenant is used. This means that the database is a
CDB. It does not provide further indication of the usage of the option beyond
this, because a single-tenant is still counted as a multitenant database.

FIGURE 3-2. Multitenant feature usage from the Enterprise Manager
Express

More detail is available from the
DBA_FEATURE_USAGE_STATISTICS view, where the AUX_COUNT
column shows the total number of user PDBs (not including PDB$SEED).

This example comes from a CDB in which two PDBs have been created.
Basically, AUX_COUNT is calculated as the number of PDBs that have
CON_ID > 2, so that PDB_SEED is excluded. If AUX_COUNT is 1, you don’t
need the option. In the preceding example, you must either license the option
or drop (move it to a new CDB) one PDB.

What should you do if you have created more than one PDB by mistake?
Don’t worry, because AUX_COUNT is only the latest value with no history
for past values. You can just move the additional PDB to another CDB that
you create for it, and then drop the additional PDB to restore the
configuration to single-tenant.

The next run of the feature usage sampling will bring back the AUX_COUNT
= 1, and you can even run the sampling manually if you want:

At this point, we have listed some interesting features that multitenant
architecture brings to single-tenant. Nonetheless, the full advantage of
multitenant becomes clear only when you consolidate several PDBs in a
container database.

Using the Multitenant Option
When you use the multitenant option, you can create hundreds, or even
thousands, of PDBs. You can do this in a test CDB to provide a database to
each developer, or in a cloud service to provide on-demand databases with
Database as a Service (DBaaS). The additional cost of the option can be
balanced by the benefit of consolidation, because it enables you to share
expensive compute resources at a high level (disk, memory, and background
processes). The multitenant option also brings the agility of lightweight PDBs
within a consolidated CDB, and you can administer (backup, upgrade, and so

on) as one.
Of course, you will likely not put all your databases into the same CDB,

for a number of reasons. First, a CDB is a specific version, so when a new
patch set is released, you will probably create a new CDB running in that new
version, and then move your PDBs to it. This is the first reason to have
several CDBs, and you can think of multiple PDBs in the same way as having
different Oracle Homes. A second reason is that you don’t want to mix
environments (for example, production CDBs will not hold test PDBs).
Third, you may also have different availability requirements: one CDB
protected in Data Guard and/or in RAC. Changing the availability features for
one PDB is as easy as moving it to the appropriate CDB. What is clear is that
you cannot consolidate everything and will probably have multiple CDBs to
manage.

On the other hand, this does not mean that your CDBs will have only a
few PDBs. First, you will probably create different PDBs for the schemas
that were consolidated into the same database, aware that multitenant offers
better isolation than schema consolidation. Furthermore, the amazing cloning
capabilities covered in Chapter 9 will cause you to think differently about
managing development databases. You can offer many more environments
for development, without increasing the complexity of the CDBs you
manage.

Of course, multitenant is new, and our recommendation is to learn it
slowly. Take your time, and do not attempt to manage hundreds of PDBs
immediately.

Application Containers
You may have a case where your CDB will contain multiple PDBs that run
the same application—for example, you may provide your application as a
service to multiple customers. In this scenario, you can provision one PDB
for each customer, and each will have its own data, but with the same data
model. You might immediately think about what Oracle did with the
metadata and object links, where the common metadata and objects are stored
once in the root only, and ask whether the same can be done for your
application. Well, the good news is that in 12.2 with the multitenant option,
you can do that with application containers. You create one PDB that will
behave as the root for your application, and then create another PDB for each

“application tenant” that links to that application root.
We will not go into the details of application containers here, because

probably very few readers of this book are SaaS providers (Software as a
Service). However, a quick example will demonstrate this feature and serve
as an occasion to strengthen what we said in Chapter 1 about metadata and
object links. Note that with the introduction of application containers in 12.2,
“object links” are now called “data links” and “common data” is called
“extended data.”

First, we create the application root, which is itself a PDB, with the AS
APPLICATION CONTAINER clause:

Then we connect to it and declare that we are starting installation of the
application:

Next we can create the required tablespaces and users:

Now that we have the application owner, we can create the application
schemas. In this example, we will create one common metadata table (same
structure but different data for each application tenant) and a common data
table (same data for all tenants), to show the new syntax.

When this is done, we declare the end of application installation:

You can see that, in this example, we have provided an application name
and version. This is for the initial install, but similar syntax is available to
manage patches and upgrades during the application lifecycle.

Now we create a PDB for each application tenant; we must be connected
to the application root for this:

For the moment, the PDB belongs to the application root, but it is
completely empty. The linkage to the application root common metadata and
data is achieved by syncing this, as follows:

At this point everything is now ready; our users and tables are there, as
you can see:

Finally, let’s connect back to CDB$ROOT and check the information
about our containers:

The application containers are identified by and have the CON_ID of
their application root. Now our application will have its lifecycle. As we did
begin install we can begin upgrade and begin patch.

Application containers can go even further: you can automatically
partition your application into several PDBs thanks to the container map that
we will cover in Chapter 12.

Consolidation with Multitenant Option
The multitenant option brings two new levels to database consolidation on a
server. PDBs can belong to an application root, which belongs to the CDB.
Figure 3-3 depicts some example use cases. Without the multitenant option,
only single-tenant is possible; thus PDB1 and PDB2 in the example stand
alone in their CDB01 and CDB02 container databases. With the multitenant
option, you can have several PDBs per CDB, as illustrated by PDB3 to
PDB5. Finally, you have the possibility of managing common metadata and
data in one place for PDBs that belong to the same application (APP1 to
APP4).

FIGURE 3-3. Different levels of consolidation on a server

In addition, of course, the schema level provides logical separation in
each PDB, and tablespaces provide physical separation.

Summary
This chapter ends Part I, which introduced multitenant and its constituent
concepts and components. We explained why Oracle Corporation developed
this new architecture. As a database professional, you appreciate the Oracle
Database because of its reliability, and a major architecture change can raise
concerns that this would be compromised. However, as we outlined in
Chapter 1, multitenant is not so much a revolution as a logical extension to
the transportable tablespaces functionality that has been in place, and
working very well, for a number of years. We endeavored to explain that the
metadata and object links (data links) are new features and simply provide
internal flags to indicate that the code has to switch to the root container to
obtain information.

In Chapter 2, we detailed the different ways of creating a CDB, which is
new in part, but shares much in common with the approach used for

databases and instances you have known for years. Finally, after reading
Chapter 3, we hope that you now realize and appreciate that multitenant is not
just for big shops or cloud providers. It is clear that multitenant is the wave of
the future for the Oracle Database, and although it brings many changes, it
includes a raft of benefits, even for Standard Edition users.

We have named a few features, such as fast provisioning, availability,
and cloning, and we hope that this has awakened your curiosity. Let’s turn
our attention next to daily practicalities and a consideration of database
administration in the context of multitenant.

PART
II

Multitenant Administration

CHAPTER
4

Day-to-Day Management

In the first part of the book, you became familiar with the concepts and
promises this new multitenant world brings to the table. Now it’s time to
get your head out of the clouds, plant your feet firmly on the ground, and

begin using it in earnest.

In this chapter, we will focus on a number of common tasks that DBAs
perform, concentrating specifically on those that are transformed in the move
away from old-fashioned noncontainer databases (non-CDBs).

Choosing a Container to Work With
In a non-CDB, an object is identified by schema name and object name—for
example, SCOTT.EMP. These two component labels, plus the object type
(which is a table in this example), are sufficient to identify the object
uniquely in the database.

NOTE
Specifying the schema name is not always required, because it is
implied in the user session itself. Within a session, the current
schema is most often the user we connected as, but this can be
changed by running the ALTER SESSION SET CURRENT_SCHEMA
command within a connected session.

In a pluggable database (PDB) environment, three pieces of information
are required to identify an object: PDB, schema, and object name. However,
unlike with schema selection, there is no way to specify the PDB explicitly,
because it is always derived from the session. This means that a session
always has a PDB container set and, similar to schema, this is implicitly set
when the session is initiated. It can also be changed later in an existing
session with proper privileges.

We will discuss this in Chapter 5, but let’s look at a simple description of
the process here. Each PDB offers a service and we connect to the database
specifying SERVICE_NAME. This implies the container we connect to: the CDB
root or a PDB.

If the user account for a connection is a common one and has the
appropriate privileges (see Chapter 6), we can change the current container
simply with

To query the container currently selected, we can either use these
SQL*Plus commands,

Or, should we need to get this information in a query or program, we can
use the following:

Data Manipulation Language (DML) operations, that is those that

actually access data, are limited to the current container only, unless we apply
some of the special options (as outlined in Chapter 12) and the objects
accessed are resolved using the implied container, as just described. And
although we can change the current container on the fly, a transaction can
modify a single container only. You will see, however, that some DDL
commands can work on more than one container at a time, while others allow
us to specify the PDB explicitly.

Managing the CDB
From the DBA’s point of view, a CDB as a whole is very similar to a non-
CDB. If we want to use it, we must start an instance; if there is no running
instance, it is unavailable to users. Apart from the datafiles, all the files
associated with the database are owned by the CDB—this means the SPFILE,
control files, password file, alert log, trace files, wallet, and other files.

One major difference, however, is that you cannot connect to a CDB per
se, because a connection is always to a container. So, for example, if we want
to connect to the CDB, we connect to the root container; this makes the root
container a very special type of container, which represents both the database
as a whole and the root container itself. This can create confusion, as some of
the commands issued in this context affect the database as a whole, while
others affect the root CDB$ROOT container only—and, with enough
permissions, they can also affect other PDBs.

NOTE
This implies that many tasks are performed in similar ways in the
root and in PDBs; it is the context that is different.

Create the Database
Creating the database, either with the CREATE DATABASE command or with the
Database Configuration Assistant (DBCA), generates a CDB with the root
container and the SEED PDB. The database does not have any PDBs when

created, although DBCA offers the option to create some immediately. The
CDB$ROOT root container, however, is mandatory because it contains
information for the entire database, along with PDB$SEED, which serves as
the template on which new PDBs will be based.

Creating a CDB versus a non-CDB involves a single click, which we
described in detail in Chapter 2.

Database Startup and Shutdown
Starting up a CDB is no different from starting any other database:

And a shutdown stops the database:

These operations also look the same in the Enterprise Manager Cloud
Control, as shown in Figure 4-1.

FIGURE 4-1. Startup/shutdown in Enterprise Manager Cloud Control

Drop the Database
Version 10g introduced the DROP DATABASE command, which completely
deletes the database. This command has no notion of PDBs, so it deletes all
datafiles and all PDBs. To delete a PDB, use the DROP PLUGGABLE DATABASE
command.

Modify the Entire CDB
Objects and functionality shared by all the containers, including

CDB$ROOT, are managed at the CDB level. And although we are connected
to the root for this, we are in reality changing the configuration for the whole
database, including every PDB.

First of all, the redo logs are global and they contain changes made by all
PDBs. Essentially there is no difference between managing redo logs of a
CDB and those of a non-CDB, except that with a CDB, we have to size the
logs according to the combined load of all the PDBs plugged into the
database.

Consequently, the archivelog or noarchivelog mode is set for the entire
CDB, as well as parameters such as archived log destinations, Recovery
Manager (RMAN) retention policies, standby databases, and so on. We
discuss backups in more detail in Chapter 7 and Data Guard in Chapter 11.

Another database-global file type is the control file. The control files
describe the complete structure of the database—that is, all database files and
all PDBs. Their content is thus updated by many DDL commands, issued
when connected to the root and when connected to a PDB. Commands that
work with the control file directly need to be issued at the root container;
these include creating standby control files as well backing these up to a file
or to trace.

Several important parameters have similar database-wide scope, and a
couple of the key ones include global database name (and thus default
domain for PDBs) and block change tracking for RMAN incremental
backups.

In fact, all database parameters are still set by default at the CDB level,
and only a subset can actually be set at the PDB level, in which their
specified value overrides that implied by the CDB. With some of these there
are additional rules—for example, the SESSIONS parameter value in a PDB
cannot be higher than the CDB value. In this case, the CDB value determines
the hard limit and memory allocations, and the PDB sets only a logical limit.

Modify the Root
Some parameters are set in the root container and determine the default
values for the PDBs as well. However, the PDBs are free to set their own
value, if required.

One of the simple settings of this sort is the database time zone, which

Oracle uses for storing TIMESTAMP WITH LOCAL TIME ZONE. A
similar trivial setting is whether new tablespaces are created as SMALLFILE
or BIGFILE by default.

Two considerably more complex settings with broader ramifications are
undo management (creation of undo tablespaces in the root and/or PDBs) and
the flashback logs configuration. Both of these are covered in more detail in
Chapter 8.

Temporary Tablespaces
Every Oracle database can have multiple temporary tablespaces, and 10g
introduced temporary tablespace groups to assist in their administration. In
short, we can use a default temporary tablespace (group) for the database, and
we can assign every user a different tablespace.

This is logically expanded in a multitenant database. There is a default set
for the whole CDB (set at the root container), and every PDB can override it
to use a temporary tablespace created in that PDB; an ALTER USER command
can override both to set it at the user level.

Managing PDBs
At the broad operational level, the whole CDB resembles a non-CDB for a
DBA, and the PDB looks almost indistinguishable from a non-CDB for the
ordinary user or the local PDB administrator. But this leaves an
administrative gap: management of the PDB by the DBA. It is in this area
that we find a number of new tasks and associated commands to invoke them.

Create a New PDB
A PDB first has to be created (see Chapter 1) or copied from another (see
Chapter 9). Both approaches are faster and simpler than creating an entire
CDB and, after all, this agility is one of the key selling points of the
multitenant architecture. With Oracle 12c, it is now easy to provision one or
more databases, whether it is for testing, development, or production, or
because a user has requested a new database in his or her Oracle Public
Cloud dashboard.

Open and Close a PDB
Starting a CDB does not imply that all of its member PDBs are opened
automatically, as Oracle actually leaves the decision to us. A PDB can be in
one of four states, as listed next; notice that there is no NOMOUNT state.
Only the CDB as a whole can be started in NOMOUNT state, and in that case
there is no control file opened, so the instance does not know which PDBs are
in the database.

 MOUNTED Data is not accessible, and only an administrator can
modify the structure, including files, tablespaces, and so on

 MIGRATE Used during various Oracle maintenance operations
(such as running scripts for patching)

 READ ONLY Accessible to users, in read only
 READ WRITE Fully accessible to users for both read and write

operations

All three open states can be further constrained to enable only those users
with the RESTRICTED SESSION privilege access.

Alter Pluggable Database Statement
The most obvious way to change the open state is by using ALTER PLUGGABLE
DATABASE statement. The syntax is very similar to ALTER DATABASE for the
CDB as a whole:

In this basic form, it affects only the currently selected container. It
would be a lot of typing to switch to a container, open it, and to repeat this for
each and every one. Instead, we can directly specify which container to

modify.
So, for example, when in the root we can execute this:

This syntax is permitted even if the current container is a PDB; however,
the specified PDB must be the current container, or we get an error:

Startup Pluggable Database Statement
For those DBAs who like the SQL*Plus STARTUP command, this has been
enhanced in 12c and now also supports PDBs. This is not an SQL command,
per se, which constrains it to the SQL*Plus console, and the list of supported
options is also limited.

When the current container is the root, you will also notice that the
command is often longer than its ALTER counterpart:

The FORCE keyword is also available in this context; it closes the database
first, before opening it again:

When the current container is a PDB, and working within that PDB, the
startup and shutdown commands imitate the syntax of a non-CDB. This is
part of Oracle’s pledge to have “all things work like before” with the move to
12c’s multitenant architecture. So the PDB admin can simply connect to the
database and issue the old, trusted, and proven startup/shutdown commands
and receive the expected results.

Note that even the shutdown abort and transactional keywords are
accepted in these commands, but, functionally speaking, they are ignored.

Use Enterprise Manager
With Enterprise Manager Cloud Control it is also possible to open and close
PDBs, as shown in Figure 4-2.

FIGURE 4-2. Close a pluggable database

Save the PDB Open State
When 12.1.0.1 was first released, starting up a CDB left all PDBs mounted
and inaccessible, and the DBA had to open them manually or write system
triggers to do it automatically. However, since 12.1.0.2, there is now a
provision to have Oracle do this for us automatically, every time the CDB is
started and opened again. We can set the desired state using the SAVE STATE
command.

We need to put the PDB into the desired state, and then set this as the
requested after-restart mode using this command:

The command stores the current state of the PDB in the
DBA_PDB_SAVED_STATES view:

In this example, whatever state the PDB is in, upon restart it will be
opened read-only again.

The DBA_PDB_SAVED_STATES view contains records in all the
databases for which we have issued save states, provided the current state is
not MOUNTED. To clear this setting and remove the row for a PDB, either
execute save state when it is MOUNTED or use DISCARD STATE. With no
record, the PDB will not be opened after CDB restart, and instead remains in
the MOUNTED state.

Open the PDB in a Cluster Database

A PDB does not have to be open on all instances, and we can actually pick
and choose where we open it. Where it has been opened, though, the mode
must be the same among all instances, though we can mix only one open
mode and the mounted mode. This is, after all, the same as for an entire CDB
or non-CDB.

The ALTER PLUGGABLE DATABASE OPEN and ALTER PLUGGABLE DATABASE
CLOSE commands can specify which instances to affect:

One interesting option in this context is the RELOCATE command. This is
shorthand syntax for “close here, open somewhere else.” The CLOSE
statement closes the PDB on the current instance (specifying relocation is
mutually exclusive with listing instances to affect) and the RELOCATE keyword
instructs Oracle to open the PDB on an instance either specified by us or
chosen by Oracle:

Saving the state is also a per-instance operation, so we must issue the
ALTER PLUGGABLE DATABASE SAVE STATE on each of the instances. However,
this may not be needed if we use grid infrastructure to manage database
services—for example, in a RAC environment. Starting a service on an
instance automatically opens that PDB (see Chapter 5).

View the State of PDBs
We can query the current state of all PDBs easily with the V$PDBS view:

View PDB Operation History
The simplest journey of events over the lifetime of a PDB would see it
starting and ending with its creation. However, as you will see in Chapter 9,
things can get decidedly more complicated than this. The
CDB_PDB_HISTORY view provides a way of reviewing this, and even for a
simple PDB, it’s a handy way to see its inception date:

You might wonder where the first four records come from. These refer to
when the DBCA template was created and then when DBCA created the
database from that template.

Run SQL on Multiple PDBs
There are some restrictions to keep in view when an SQL statement, which is
usually intended for a single PDB, needs to be run on more than one PDB.

First, user management and privilege grants behave differently for a PDB
than for a non-CDB, as you will see later in this chapter. Second, Chapter 12
shows some examples of PDBs working together in tandem, sharing the data
structures and data.

Aside from these options, it is possible to implement a simple
workaround. If we log in to the root, we can change the current container on
the fly, privileges permitting. So it follows that we can execute the desired
SQL in various containers, one by one, by selecting the container in the
session, running the SQL, and repeating. This can be done by using an SQL
script or with dynamic SQL; execute immediate or DBMS_SQL.

We don’t even have to code the container switch ourselves, because
DBMS_SQL.PARSE has a new parameter, CONTAINER, that allows us to specify
where the statement should be run.

Note that the rule that a transaction cannot span multiple containers is
still in effect, so we have to commit the changes before running SQL in a
different container.

Modify the PDB

The datafiles are owned by the PDBs and the usual SQL statements still
apply, so there is no change in creating tablespaces, adding datafiles, or
taking them online or offline.

As discussed, in the PDB we can override some of the default parameters
set at the CDB level: database time zone, default temporary tablespace, and
the choice of BIGFILE/SMALLFILE datafile default, for example.

What is set only at the PDB level is the default tablespace. Because
permanent tablespaces are private to PDBs, there is no CDB-level setting.
Similarly, the default PL/SQL edition is also set at the PDB level only.

All of these features are present in a non-CDB so, for SQL compatibility,
they can also be issued using the ALTER DATABASE command when connected
to a PDB. Again, this means that the PDB administrator can use the existing
trusted and proven commands, which are useful especially if the admin has
built up a library of favorite SQL scripts over time.

A unique feature for multitenant PDBs is storage limit. This parameter
enables us to determine the maximum allowed size of all tablespaces as well
as the maximum space occupied in a CDB-level temporary tablespace:

It is also possible to specify FORCE LOGGING mode in a PDB. Normally
this is done at the CDB level to ensure that any NOLOGGING operations are
actually logged, and thus the integrity and completeness of a standby
database, for one, is ensured. But in some cases, we may want to change this
setting at the PDB level, possibly disabling the FORCE LOGGING mode for that
particular PDB (it’s a temporary testing database or is not included in any
standby, for example). Alternatively, we can set a specific PDB to force
logging, while keeping CDB level force logging disabled. (Note that the
usual options for setting FORCE LOGGING at tablespace level and NOLOGGING at
table level still apply. In other words, it is possible to create a messy,
multilayered setup, although we would advise against this and recommend
keeping things simple instead.)

The database must be in restricted mode to run these commands, and then
we can invoke the desired setting:

Note that there is also a LOGGING and NOLOGGING clause for a PDB, and
this establishes the default mode for any new tablespace created in it. As
these clauses set only the default setting for tablespaces created in the future,
they do not have an immediate effect on the database, unlike the FORCE
LOGGING clauses.

Drop a PDB
The life of a PDB ends with a drop operation. It requires a SYSDBA
connection, but it is one of the simplest operations to enact. The syntax

suggests that the only additional input we have in this decision is whether to
keep the datafiles on disk or not. In reality, however, only an unplugged
database can keep its datafiles, while others have to drop them. (See Chapter
9 for a detailed description on unplugging a PDB.)

To effect this operation, the PDB has to be closed (or unplugged), and
this must be performed from the root container.

The default option is to keep the datafiles, and Oracle apparently assumes
that moving a database by virtue of unplugging and plugging is a more
frequent operation than outright dropping.

Patching and Upgrades
Each Oracle software major version (such as 12c) has a number of additional
releases (for example, the 12c first release is 12.1, and the second release,
12.2, is also called 12cR2). Between these releases, patch sets are released.
For example, the 11gR2 final patchset is 11.2.0.4. The patch sets, despite the
name, are actually distributed as full, standalone software installations. All
these levels of software distribution (edition, release, patch set) provide new
features and bug fixes. Additionally, on top of patch sets, you can (and
should) apply the Patch Set Updates (PSUs, or bundle patches in Windows,
which include the patch sets).

NOTE
Upgrading and patching are inherently dynamic processes, but to
understand the features available for their administration, you
should refer to the Oracle documentation. Information about
upgrades is constantly evolving as bugs and issues are encountered,
so, for this reason, the standard documentation is not always

sufficient, and you must also review the My Oracle Support (MOS)
notes about them. For a friendly and helpful read in light of this, we
recommend you bookmark and regularly monitor the excellent
upgrade blog from Mike Dietrich, the Master Product Manager for
Upgrades and Migrations at Oracle:
https://blogs.oracle.com/UPGRADE/.

You can upgrade to 12.2 directly from 11.2.0.3, 11.2.0.4, 12.1.0.1, and
12.1.0.2. If you are using a previous version of the Oracle Database, you can
upgrade in several steps, or choose a logical migration approach with a utility
such as Data Pump. In this chapter, we discuss physical upgrades, in which
data in the actual datafiles remains unchanged.

Upgrade CDB
In the same way that you can upgrade a database, you can upgrade a CDB.
This is the simplest way to upgrade all PDBs at the same time, provided you
have a maintenance window in which you can stop all their services at the
same time.

To upgrade all PDBs, they must first be opened:

If you want one or more PDBs to remain closed to postpone their
upgrade, they will need to be explicitly excluded within the catcon.pl and
catctl.pl utility commands, using the -C argument.

Pre-Upgrade
In Oracle Database 11gR2 you used the utlu112i.sql script to check the
database you wanted to upgrade. Oracle Database 12c comes with a new pre-
upgrade script that installs a package and runs it, detailing suggestions for
manual or automatic actions to perform before and after the upgrade. The
script is preupgrd.sql, and it calls utluppkg.sql, which installs the package.

There are two important points to note about this script. First, it is

https://blogs.oracle.com/UPGRADE/

shipped in the rdbms/admin directory of the ORACLE_HOME of the new
version of the Oracle software, but remember that it will be run in the
database that you want to upgrade, with its older ORACLE_HOME. If both
ORACLE_HOME directories are located on the same server, you can call the
scripts from the new directory. But you can also copy the preupgrd.sql and
utluppkg.sql files.

NOTE
The upgrade files shipped in an ORACLE_HOME are actually
useless for the databases running from this ORACLE_HOME. Those
files are to be used for a database from a previous version
ORACLE_HOME.

The second important point is that the shipped upgrade files come from
the release of the patch set, but those scripts may evolve over time. You can,
and should, always download the latest version from My Oracle Support
MOS ID 884522.1 at support.oracle.com/epmos/faces/DocContentDisplay?
id=884522.1.

When you run preupgrd.sql, it installs the dbms_preup package and
generates a log file and fixup scripts in the following directory:
$ORACLE_BASE/cfgtoollogs/<db_unique_name>/preupgrade/.

NOTE
If ORACLE_BASE is not set, it will be replaced by
ORACLE_HOME.

Remember that you are in a multitenant environment, so running the
script from SQL*Plus will execute it only on CDB$ROOT. You must use the
catcon.pl utility introduced in Chapter 2 to enact this at the PDB level. Here
is an example in which we run the preupgrd.sql from the future
ORACLE_HOME:

First we create the log directory that we will specify with the -l
argument:

Then we run the preupgrd.sql script located in rdbms/admin of the future
ORACLE_HOME, specified with the -d argument with an absolute path to
the current directory:

The output of catcon.pl goes into the directory and files defined with -l
and -b, but the pre-upgrade package still writes its output in
$ORACLE_BASE/cfgtoollogs. Here is an example of the files generated
from a two PDB, CDB upgrade:

You have a set of logs, pre-upgrade fixes, and post-upgrade fixes for the
CDB, and in the pdbfiles subdirectory, one for each PDB.

Note that preupgrade_fixups.sql and postupgrade_fixups.sql contain the
code for all containers (CDB$ROOT and all those in the pdbfiles
subdirectory), so you can run those scripts with catcon.pl on all containers.

preupgrade.jar In 12.2, the pre-upgrade process received a further
enhancement, being bundled into a Java utility, and the previous versions
were deprecated. Making use of the same environment as before, where
ORACLE_HOME is set to the current environment and the new one is
installed in the 12202EE at the same level, we can run this:

NOTE
Use the -help flag to show the options for changing the output

directories.

At the time of writing, the Java solution does not automatically generate a
master script to run with catcon.pl, but you can achieve this by concatenating
the per-container scripts:

Then, as with the previous method, you end up with one file with “if
con_name” conditions that you can run for each container.

Backup or Restore Point
Invoking an upgrade process is a simple operation and is fully automated
when you use the Database Upgrade Assistant (DBUA). But problems may
occur at any time during the upgrade process. Imagine, for example, that you
plan one hour of downtime to upgrade a 10TB database, and there’s no
problem with that because the time to upgrade does not depend on the size of
the database per se. But what do you do if the upgrade fails in the middle—
perhaps due to a bug, server crash, remote connection unexpectedly closed,
and so on? Did you count the fallback scenario within the one-hour outage?
How long will it take to restore 10TB and recover all the redo generated since
the time of this backup?

What is critical is that, before starting an upgrade, you must plan out the
fallback scenario. The easiest method for doing this, if you are using
Enterprise Edition, is to create a guaranteed restore point:

Then, in case of failure, you can flashback the database quickly to revert
to this pre-upgrade point:

Of course, this assumes that your database is in archivelog mode and that
you have enough space allocated for the flashback logs. Helpfully, the
required size for the fast recovery area (FRA) is one of the precheck activities
performed by the preupgrd.sql script.

You may choose other means by which to back up the database, such as
taking a storage snapshot when the database is closed. If your database is in
noarchivelog mode, and you want to do a cold backup before the upgrade,
keep in mind that the upgrade will not update anything in your user data.
Then you can put your user tablespaces in read-only mode and don’t need to
back them up. Only the system tablespaces remain open (SYSTEM,
SYSAUX, UNDO, and all those that have system components objects) and so
require backup. This means that you don’t need to back up the user
tablespaces, which reduces the time to restore if you do need to perform a
point-in-time recovery before the upgrade. This can also be automatically
achieved with the upgrade utilities: the -T option of catctl.pl or -
changeUserTablespacesReadOnly of the DBUA.

Pre-Upgrade Script
The pre-upgrade scripts generated by preupgrd.sql in the
cfgtoollogs/<db_unique_name>/preupgrade directory can be run on each
container with catcon.pl, as follows:

You also have to fix any manual recommendations, but don’t hesitate to
invoke the pre-upgrade script again to check and confirm that the
recommended actions have been completed.

Here is a quick check of the manual tasks that were recommended in one
test example we ran:

These fixes required manual intervention. In this example, we had to
increase PGA_AGGREGATE_TARGET. Note that we did it manually, and only at
CDB level, because the CDB value is the default for the PDB. More detail
about parameters will follow later in this chapter in the section “CDB
SPFILE.”

Upgrade with catupgrd.sql
Now, to upgrade, you must shut down the CDB. The downtime begins. Prior
to this, check to ensure that the COMPATIBLE parameter is set. You can set this
parameter to the current value in case you need to downgrade later. If you
have created a restore point, this is actually mandatory; otherwise you will
get an ORA-38880 error when mounting from the new ORACLE_HOME.

From here, you can copy the SPFILE to the new ORACLE_HOME, and
then change the /etc/oratab file. Then you can start the database from the new
ORACLE_HOME in upgrade mode, ensuring that all PDBs are in the
required upgrade mode:

Change /etc/oratab to

And set the environment like so:

Then you are ready to startup upgrade:

Note that the OPEN_MODE displayed by show pdbs is MIGRATE here:.

Time to run the upgrade. The utility to run the catupgrd.sql script is not
SQL*Plus but catctl.pl, the parallel upgrade utility optimized to minimize the
time the process takes by parallelizing and reducing the number of restarts. In
12.2, running catupgrd.sql directly is not supported.

In this example we have added the -n 4 to parallelize with four processes
in total, and -N 2 to use two processes per container, which means that the
upgrade of PDBs will take place on two PDBs at a time. One additional point
worth noting: Parallel operations are usually unavailable in the Standard
Edition (SE), but this is not the case with upgrades. They work the same in
SE as in Enterprise Edition (EE), meaning that you can perform parallel
upgrades in SE.

You will also see that we have added another parameter, -M. By default,
once the CDB$ROOT has been upgraded, the instance that was in upgrade
mode is restarted to normal mode before the PDBs are upgraded. This is good
if you need to open PDBs as soon as they are upgraded, without waiting for
the others to complete. Here, with the –M flag, the CDB$ROOT stays in
upgrade mode until the end. It’s faster, but we will have to wait until all of
the PDB upgrades finish for them to be open and accessible.

You may choose to have the PDBs open as soon as they are upgraded,
and in 12.2 you can even prioritize the way they are processed by using the -
L argument.

The main log file for the upgrade process is upg_summary.log, which
details the elapsed time of the upgrade per container and per component. You
can also review the results again like this:

At the time of writing, the PDBs upgrade process takes the same time as
the CDB$ROOT upgrade process, or even longer, but this will be improved
in the future. Actually, thanks to metadata links, a large part of the upgrade
DDL does not need to be run on PDBs, but this optimization is implemented
only partially now.

Let’s review an example of time taken by an upgrade. The following is
the CDSB$ROOT part of the upg_summary.log from 12.1 to 12.2. You can
see that the Oracle Server section is only 21 minutes within an overall
elapsed period of 92 minutes:

Our recommendation, in view of this, is not to install any components
that you don’t need. With the multitenant option, you will likely create lots of
PDBs, so perhaps you will choose to install all components in case you need
them in the future. But that will make upgrades take longer. Note that without

the multitenant option, in single-tenant, it’s always better to choose only what
is actually needed.

Taking our previous example as a test case, you may choose to upgrade
Oracle Application Express (APEX) in advance. Or even better, remove it
from CDB$ROOT completely with
$ORACLE_HOME/apex/apxremov_con.sql, because it’s not a good idea to
have APEX in the root container or the APEX version will be tied to the
database version.

Open Normally
At the end of the upgrade process, when everything has completed
successfully, we can open the CDB and the PDBs:

Upgrade Resume
In 12.2, if the upgrade fails, look at the PHASE_TIME number. Then, if you are
able to fix the problem, you can continue the upgrade with the -p option. You
can also use the -c option to choose (and prioritize) the containers.

For example, let’s imagine our upgrade has been interrupted. The
catresult.sql shows that the post-upgrade step has not been performed. The
log for PDB phases PDBSOracle_Server.log shows nothing after Phase 105
for PDB:

And the log file for PDB shows that it started the PHASE_TIME number
106 but didn’t finish:

To resume, we can run it again from this specific phase—that is, only for
the PDB container and starting at PHASE_TIME 105:

Without the -P flag, which specifies an end phase, it will run all the

remaining phases until the end—and in our example the output shows that
this will be Phase 108:

If you encounter an issue with this process, you can obtain a detailed
debug trace with the –Z option, but that is beyond the scope of this book.

Post-upgrade Script
The post-upgrade scripts that have been generated by the preupgrd.sql in the
cfgtoollogs/<db_unique_name>/preupgrade directory can be run with
catcon.pl:

And then you can recompile all invalid objects with utlrp:

Test and Open the Service
From here you can test the application(s) and open the service. Don’t forget
to drop any guaranteed restore points, if any were used.

How Long Does an Upgrade Take?
Because upgrading is an operation that you perform when an application
is offline, you need to estimate the time it will take. Upgrading a CDB
takes longer than upgrading a non-CDB because you have multiple
containers. However, the upgrade of PDBs is optimized. As the
CDB$ROOT is upgraded first, upgrading the metadata and object links
should be faster than upgrading a standalone database. Thanks to this,
upgrading a multitenant with N PDBs should theoretically be faster than
upgrading N standalone databases. This is, at least, one goal of
multitenant architecture from the get-go, but this optimization has not
yet been fully implemented. If you are in the single-tenant configuration,
upgrading the CDB takes longer than upgrading a non-CDB because
three containers are involved: CDB$ROOT, PDB$SEED, and your
PDB.

Note that the size of the database, per se, does not determine the
time to upgrade, because it is only the data dictionary that is affected.
Obviously, a huge number of objects can increase the time to upgrade,
but the major cause for extended upgrade duration is the number of
components installed.

Database Upgrade Assistant
We have described the manual procedure, which hopefully helps you
understand the phases of the upgrade process. However, as in previous
versions, the procedure outlined is fully automated with the DBUA, available

from the Oracle Home of the new version. There, you can choose the
database to upgrade, along with the different upgrade options.

If you don’t have the graphical environment set up, or you want to script
the upgrade, you can also run DBUA in silent mode. There is no response
file, but all options are available from the command line. You can also run
the pre-upgrade step only from the new Oracle Home, as per the following:

The output directory created under $ORACLE_BASE/cfgtoollogs/dbua is
displayed and you will find all log, pre-upgrade, and fixup scripts directed
there.

For the upgrade, you can see all options from the inline help:

An example of a useful additional option is to create a restore point
automatically with the -createGRP argument.

We will not offer any preference here to the manual or DBUA upgrade,
because this depends on a number of factors, such as your experience, the
requirements, and the complexity of the database. In short, you can have
more control with the manual procedure, but everything is possible with
DBUA, graphically or in a scripted way.

Plugging In
Upgrading the CDB is fastest when you have a large maintenance window to
upgrade all the PDBs at the same time. But in real life, you probably don’t
want to upgrade all at the same time because PDBs are for multiple
applications or “tenants.” And here the multitenant architecture can help.
Several ways to move PDBs across containers will be covered in Chapter 9,
and those movements do not require that you work in the same version. In
addition, a very interesting way to upgrade a PDB is to move it to a CDB that

is in a higher version. This is an option with plug-in and remote cloning, and
it is even possible without the multitenant option, where you have only one
PDB per CDB.

The data movement process is described in Chapter 9, but it’s important
to note that once you’ve plugged in or cloned from a previous version, you
need to bring your PDBs to the new version. Remember that most of the PDB
dictionary objects are links to the CDB$ROOT, so they are usable only when
those metadata and object links are upgraded to the CDB version. The same
catupgrd.sql script performs this action, and it is run in a specific container
with the catctl.pl script, using the -c option.

NOTE
If you choose to unplug/plug in, remember that you always need to
have the PDB protected by a backup. Drop it from the source only
when it is upgraded and backed up in the target.

Basically, upgrading a plugged PDB is the same as upgrading a PDB in a
CDB. You specify the container with the -c option of the catctl.pl script.
Verification of the need to upgrade can be checked from
PDB_PLUG_IN_VIOLATIONS:

Remote Clone from Previous Version
Remote cloning uses the remote file server (RFS) process, which may return
an error if the client uses a higher version:

For example, when cloning into 12.2 from a remote 12.1.0.2 database,
you receive the following error, with the remote alert.log showing:

The solution is to apply patch18633374: COPYING ACROSS REMOTE
SERVERS on the source
(https://updates.oracle.com/download/18633374.html) to allow file transfers
to a higher version.

The cloning procedure will be described in Chapter 9, and the dictionary
upgrade is performed by running catupgrd.sql on the container.

Patching
Upgrades to new releases (such as from 11.2.0.4 [11gR2 Patch set 3] to
12.1.0.1 [12cR1]) or to a new patch set (such as 12.1.0.1 [12cR1] to 12.1.0.2
[12cR1 Patch set 1]) are provided by installing a new Oracle Home and then,
from that new Oracle Home, executing startup upgrade and catuprgd, as
shown earlier. New versions, releases, and even patch sets provide large
numbers of bug fixes and new features, and thus change significant amounts
of dictionary structure and data.

Between these Oracle releases, partial patches are released, which contain
only important fixes and changes in a few libraries in the Oracle Home.
These have minimal impact on the dictionary:

 Security Patch Update (SPU) Previously referred to as CPU (Critical

https://updates.oracle.com/download/18633374.html

Patch Update), these updates provide the quarterly cumulative security
fixes.

 Patch Set Update (PSU) Provides SPU and additional important
fixes. Their goal is to stabilize—that is, to fix critical issues without
the risk of regressions.

 Bundle Patch Update (BPU) Contains a bunch of patches related to a
particular component. For example, CBO patches are not in PSU but
can be provided in the Proactive Bundle Patch.

Those include only the libraries or files that are changed and are applied
by the OPatch utility. In 12c, the changes to the dictionary are done through
the datapatch utility provided in the OPatch. Datapatch checks all containers
to know which ones have to be patched. However, only open PDBs are
verified, so those that are closed will be in restricted mode when they are
opened, and datapatch will need to be run again for them.

Here is an example in which we have plugged the PDB2 PDB to a CDB
that has a patch set additional to the CDB of origin:

Only the PDB2 has to be patched.
In this example, the multitenant architecture brings significant benefit

even when you have only one PDB (the single-tenant that you can use
without the multitenant option). If you want to upgrade or patch the entire

CDB, it will take longer, because there are three container dictionaries to
update. But if you create a new CDB with a new version, you can simply
unplug/plug in. There is no file movement needed, because it is on the same
server; then run catupgrd or datapatch. This is faster because there are only
relatively few metadata links to check and update.

Using CDB-Level vs. PDB-Level
Parameters
Initialization parameters control the instance behavior. Their first utilization
is at instance startup, which is why they are called “initialization parameters.”
These parameters are also used later, however, and can control the session
behavior. Note that each session actually inherits settings from the instance,
and some of these can be changed by the session. It’s also possible to use
different parameters at the statement level, with the OPT_PARAM hint.

The parameters are not stored within the database itself, because a large
number of them are needed before opening the database. In older versions of
Oracle Database, they were stored in a text file, which Oracle calls the PFILE
(the parameter file), and that many DBAs referred to as the init.ora. This file
was read by the session running the startup command, but in current versions
of Oracle, the parameters are stored in a server parameter file (SPFILE),
which is managed by the instance. We can change parameters in the SPFILE
with the ALTER SYSTEM command, or we can re-create the SPFILE from a
PFILE if we are unable to start the instance.

This does not change in multitenant, except that we have a new level
between the instance and the session: the PDB.

CDB SPFILE
The CDB SPFILE is the same as the SPFILE you are familiar with in the
non-CDB context. It stores all parameters that are set by ALTER SYSTEM SET
… SCOPE=SPFILE when this command is run at CDB$ROOT level. Those
parameters are read when the instance is started, are used by CDB$ROOT,
are the defaults for sessions in CDB$ROOT, and also serve as the default for
the PDBs when they do not have their own setting.

PDB SPFILE Equivalent
PDBs offer the same Oracle Database functionality, so you are able to set
your initialization parameters with the ALTER SYSTEM statement. As an
example, when connected to PDB1 we set the following:

And we can query it with SHOW SPPARAMETER:

This is similar to what we know in non-CDBs, but here the settings are
not stored in the instance SPFILE. In multitenant, we have the CDB$ROOT
to store information about the containers, and this resides in the
PDB_SPFILE$ system table:

You don’t see the CON_ID here, but only the PDB_UID, which we can
use to match to our PDB name with V$PDBS:

In this example, our SPFILE parameter for optimizer_dynamic_sampling
in PDB1 is actually stored in the root.

When you are connected to a PDB, you can query the SPFILE parameters
with show spparameter or with a query on V$SPPARAMETER. You can
also dump all parameters defined into a text file, because the CREATE PFILE
syntax is supported:

Keep in mind, however, that this text file cannot be used to start the
instance, and the name PFILE is there only for syntax compatibility. This is
because we are connected to a PDB, and an instance is not at that level.

Another possibility is to generate the describe file, the same XML file
that is used by the unplug/plug in operations we will cover in Chapter 9,
because it houses information (parameters) about the container that are not
stored within the container itself.

These are persisted across operations such as PDB close, instance startup,
unplug/plug in, and cloning. The PDB_SPFILE$ in PDBs is usually empty,
except when the PDB is unplugged, in which case it serves as a backup for
the XML file.

Both the CDB SPFILE file and the PDB SPFILE table can store a
comment. It is highly recommended to add the COMMENT clause to any
parameter changed permanently; you have 255 characters to document the
date and the reason for the change.

SCOPE=MEMORY
Setting a parameter with SCOPE=SPFILE changes the persistent setting, the
value that is displayed by show spparameter, for future startup only. The
SCOPE=MEMORY clause, on the other hand, changes the current value of the
parameter until the next startup. Without the SCOPE clause the parameter is set
both in MEMORY and in the SPFILE. This behavior is the same in root and
in PDBs, except that shutdown/startup means close/open in the PDB context.

Alter System Reset
You can use ALTER SYSTEM RESET to remove the persistent setting for a
parameter, which means that when the database is next opened it will take the
CDB memory value as the default. Unfortunately there is no reset with the
SCOPE=MEMORY option, so either you set the value or you reset it in the
SPFILE and close/open the PDB.

ISPDB_MODIFIABLE
The V$PARAMETER shows all parameters with their names, descriptions, and
the current values for your session. There are flags that identify the
parameters that can be changed only by restarting the CDB instance

(ISSYS_MODIFIABLE=FALSE), that can be changed for the instance without
restart for future sessions (ISSYS_MODIFIABLE=IMMEDIATE), and that can be
changed for current sessions as well (ISSYS_MODIFIABLE=DEFERRED). In 12.2,
there is also a flag to identify the parameters that can be changed in a PDB
without close/open (ISPDB_MODIFIABLE=YES), and these are a subset of the
ISSYS_MODIFIABLE group.

In short, parameters relating to the instance itself, such as all memory
sizing options, are not PDB-modifiable. However, a large number of
parameters can be set by the session, and they are PDB-modifiable, with this
value adopted as the default for new sessions. In addition, some parameters
require an instance restart, which necessitates closing all PDBs.

Container=ALL
By default, a parameter is set for your current container
(CONTAINER=CURRENT). However, when you are in the CDB$ROOT, you can
change a parameter for all PDBs by adding the CONTAINER=ALL clause. The
goal is not to enact a parameter change, one by one, in every PDB. Instead,
when you want to use the same parameter for all containers, you can set it in
CDB$ROOT and let it unset within the PDBs. This command can be used to
change the value for all containers immediately, without restarting them, as
well as to modify the CDB$ROOT SPFILE for future startup. Note that when
the command is combined with SCOPE=SPFILE, this makes the parameter’s
value the default for the whole instance. For example, from CDB$ROOT, we
set the temporary undo to true:

Because of the scope=both, it is changed in memory and also in the
SPFILE:

Then in all PDBs, it is changed in memory, but not actually stored in
PDB_SPFILE$:

On reflection, this actually makes sense, because there is no need to store
a parameter for all containers when the default inherited from the CDB is
correct.

DB_UNIQUE_NAME
In our query on PDB_SPFILE$, we saw a DB_UNIQUE_NAME column
with value CDB_GVA, which is the database unique name for our CDB. The
parameters that are set in a PDB with SCOPE=SPFILE are valid only for one
CDB database unique name. We will cover Data Guard in Chapter 11, but
you should already know that the DB_UNIQUE_NAME is the correct way to
distinguish a primary from its standby database(s). Having the parameter
identified by the CDB unique name means that a parameter changed for a

PDB in the primary will not be used on the standby database. This makes
sense, especially in the context of Active Data Guard, where the standby can
be used for reporting, and you may also want to define different optimizer
parameters for the online transaction processing (OLTP) on the primary, and
the reporting on the standby. In our preceding example, we set the dynamic
sampling to 8, but now we want the default value on the primary CDB_GVA
(so we reset it) and the level 8 on the standby CDB_BSL. This can be
achieved with the DB_UNIQUE_NAME clause:

At the time of writing, there are some limitations with this feature. For
example, we cannot reset a parameter with the DB_UNIQUE_NAME clause.
A workaround for now is probably to remove the row from pdb_spfile$.
Another point is that the DB_UNIQUE_NAME provided is case-sensitive,
though we have opened enhancement requests for this.

CAUTION
The SPFILE parameters are related to a site and not to a service. In
case of switchover or failover, some services will run on another
site. For example, the OLTP will failover to the site where the
optimizer parameter is defined for reporting. In view of this,
particularly when it comes to maintaining different optimizer
parameters, it’s probably a good idea to set these from a logon
trigger that depends on the service name, rather than to a per-site
setting.

Summary
In this chapter we covered the basic administration of PDBs after you have a
CDB. You can create PDBs, patch them, upgrade them, parameterize them,
and drop them. Most of these operations are the same ones that every DBA
performs daily, but they are adapted to incorporate two levels in multitenant:
CDB and PDB. You will see that a number of new operations are made
possible with the multitenant architecture, mostly in Part III, where we delve
into recovery and data movement. You need to know and understand the
basic operations, and all administration procedures and scripts that are
adapted, to function in the new multitenant paradigm.

This chapter focused primarily on the DBA who operates at the CDB
level, who is often connected to root, and who invokes SET CONTAINER when
needed. In the next chapter, you will see how to make use of those PDBs,
which provide a service to which you can connect directly.

B

CHAPTER
5

Networking and Services

efore we dive into Oracle networking, related specifically to the
Oracle Database 12c multitenant option, we need to take a look again
at some of the core concepts. We will not go into detail here on

Oracle networking features and functionality, because that is a book on its
own; for more in-depth information, we recommend you review the “Oracle
Net Services Administrator Guide.” In this chapter we will cover the new
listener registration (LREG) background process, including brief mention of
the new Oracle Database 12c multithreaded option, before diving into the
details of services and Oracle Database 12c Multitenant.

Oracle Net
Oracle Net is the software component that provides the network layer for
communication between the client and the Oracle database instances. It forms
a communication channel between the client and database instance once a
connection has been established.

Oracle Net Services consists of a number of components, such as Oracle
Net, that facilitate connectivity between distributed environments. It also
includes the Oracle Net Listener, the Connection Manager (CMAN), and two
key configuration utilities: Oracle Net Configuration Assistant (NETCA) and
Oracle Net Manager (netmgr).

The Oracle Net Listener
The listener is one of the most important components to consider when

establishing a new Oracle Database environment, yet many DBAs treat it
lightly, paying it only minimal attention. Perhaps this is because, in many
cases, once the listener is configured you can forget about it. But in Oracle
Database 12c, with the introduction of multitenant, there is more to the
listener than meets the eye.

Let’s begin with a recap of the basics of a database connection in the
traditional model. When a database starts it will, by default, register with the
listener, providing it with one or more service names. But here is where it can
get confusing:

 A service might identify more than one instance (in the case of Oracle
Real Application Clusters [RAC]).

 A single instance can be registered by more than one listener.
 The database may register more than one service with the listener.

When looking at the process of a client connecting to a database, we can
see there are three high-level steps performed, as shown in Figure 5-1. First,
the client initiates communication by requesting a connection from the
listener to a particular service. Then the listener identifies the appropriate
service and passes the details to the client, after which it will make a direct
connection to it. Once the connection is established, it is important to note
that the listener is not involved in any way in the communication going
forward.

FIGURE 5-1. Basic connection overview

This brings us to an interesting change in Oracle Database12c: the new
listener registration (LREG) background process.

The LREG Process
Instance registration with the listener in Oracle 12c behaves a bit differently
from that of previous versions. In 12c, the LREG is a new background
process that will register the database instance with the listener, which was a
task performed in earlier versions by the Process Monitor PMON) process.
On UNIX, this process is easily identified at the OS level, because “lreg” is
included in the visible process name. This can be seen in the following code
block:

The format of the process is ora_lreg_SID.
Note that this background process is classified as critical for the database

instance, and, if it is terminated, the Oracle Database instance will actually
abort. The code blocks that follow show the output of the alert log when this
background process is killed:

From the alert log, notice the following messages when the LREG is
terminated:

The LREG background process also writes out information regarding
service updates in the listener log. These include service_update,
service_register, and service_died messages; here’s an example:

NOTE
When we used the strace utility to view additional detail on the
LREG process (though it is not recommended that you use this
utility on background processes in production systems), we observed
a review of the load average (/proc/loadavg) approximately every
33 seconds.

When running in the new multithreaded mode, LREG does not run as a
process on its own, but is run as a thread. Following is an excerpt from a
Linux system that shows the LREG process running as a thread (thread ID
4696) under the process ID 4658:

From the preceding example, we now have the operating system process
ID 4658. If we review the process listing for the database CDB2, we can
easily identify this process:

Taking process 4658, we can again use the ps command to list the
threads associated with this:

By reviewing the output of the ps command, we can identify the LREG
thread.

NOTE
The new multithreaded option for UNIX-based systems was
introduced in 12.1.0.1. To enable the multithreaded mode, the
database parameter THREADED_EXECUTION must be set to TRUE and
the database restarted. The multithreaded model enables Oracle
Database processes to execute as operating system threads in
separate address spaces. Some background processes run as
processes containing only a single thread, but the other Oracle
processes run as threads within processes. Multithreaded brings
some interesting new options and changes.

Networking: Multithreaded and
Multitenant
One of the key advantages of multitenant is consolidation: multiple database
(non-CDB) environments can be configured to run as pluggable databases
(PDBs) in a single consolidated container database. This enables you to get

the most out of your valuable resources by not having to allocate unnecessary
resources. For example, instead of running ten databases on one server, each
with its own System Global Area (SGA) and background processes, you
could consolidate into a single container database with PDBs, which would
mean one SGA and one set of background processes. And the multithreaded
mode takes this one step further by reducing the amount of processes on the
system, with the possibility of improved performance and scalability.

When you’re configuring the multithreaded option (by setting
THREADED_EXECUTION=TRUE and restarting the CDB), consider that you will
also need to make a change in the listener to allow threads, rather than
processes, to be spawned. To enable this, set the parameter
DEDICATED_THROUGH_BROKER_<listener_name>=ON in the listener.ora
configuration file, and then restart the listener so that the changes take effect.
As a result, when the listener receives a client connection request, it will pass
this onto a connection broker (Nnnn), which will then verify the
authentication, and a new thread will be spawned in an existing process.

The total number and type of connection brokers can be set using the
CONNECTION_BROKERS database parameter. By default, two brokers are
configured—one of type DEDICATED and one of type EMON. To view the
status of the connection brokers (which are also spawned threads), you can
review the status of the services using the listener control (lsnrctl)
command, as follows:

A quick way to see the thread and process details is to use the ps
command:

And looking further at V$PROCESS, we see the following:

NOTE
Do not attempt to kill thread processes via the command line (using
the kill command) because you might end up killing a number of
other thread connections as well. Instead, consider using ALTER
SYSTEM KILL SESSION by passing in the correct SID and SERIAL#
values. Make sure you are working with the correct session by first
looking at V$SESSION and V$PROCESS.

If you want to configure certain clients to use the threaded option and
others to use processes, you will need to configure two listeners, each one
using different ports. It is also possible to create a dedicated listener for a
specific PDB, but you’ll learn more about this a bit later in this chapter.

Service Names
When using a multitenant configuration, you will need to be aware of the
changes introduced with services. In this section we will cover the important
changes you should be aware of when creating and maintaining Oracle
Database 12c Multitenant environments.

Default Services and Connecting to PDBs
When creating a new PDB, a new default service is automatically generated
for it, with the same name as the PDB. The service will be registered with the
listener and client connections, and connections to the PDB can begin to
make use of the new service once the PDB is opened. The automatic
registration might take a few seconds, although you can run alter system

register to force the registration to occur immediately.
So, for example, if a new PDB called PDB1 is created, a new default

service of the same name will also be created. The new service details can be
viewed by looking at v$services or cdb_services:

Reviewing the listener status and services will indicate whether the new
service name is registered:

The end user/application can now connect to this PDB using the new
service name via a number of methods, such as via the Oracle Net Services
name using the tnsnames.ora file or an easy connect string. The basic easy
connect string takes the format @[//Host[:Port]/<service_name>], and when
this method is used, no entry is required in the tnsnames.ora file.

Here’s an example of using the easy connect method to connect to the
newly created PDB1:

You can also add and use an Oracle Net Services name entry in the
tnsnames.ora file:

Once the entry is added to the tnsnames.ora file, it can be used to connect
to the PDB:

Figure 5-2 illustrates two basic concepts. When each PDB is created,
each will have a service name created that matches the PDB name; the
service is automatically registered with the default listener. When a client
connection is requested to the listener for a specific service name for a PDB,
the listener prompts a server process to be spawned and the connection
between the client and the PDB will be established, with the listener no
longer involved.

NOTE
When running more than one CDB on a single system with PDBs
using the same service names, it is recommended that you use

separate listeners for each CDB. If only one listener is used, you will
end up with both CDB databases having service names for the PDBs
registered with the same listener. The end result could be that an
incorrect connection may be established, which may lead to
undesirable results. In view of this, it is recommended that all
service names on a system should be unique to avoid such collisions
or, alternatively, separate listeners configured for each CDB.

FIGURE 5-2. Service name registration (LREG) and client connection

Before moving on to the next section it is worth mentioning that you can
also use the local environment variable TWO_TASK (on UNIX) or LOCAL (on
Windows) to specify a default connect identifier (connect string). When you

set this variable, the user will be able to connect to a database without
explicitly specifying the connect string. Here’s an example:

This method might be required by various applications. Also note that the
easy connect string can be used as well; this removes the dependency of
having a required entry in the tnsnames.ora file (example: export
TWO_TASK=//linux3.orademo.net/PDB1.orademo.net).

Creating Services
By default, a service is generated for each PDB on creation. In many cases,
the requirement will be to create additional services and associate them with
the particular PDB. This can be especially useful in Oracle RAC
configurations, where you might want a specific application to connect to its
PDB only from one of the instances. Creating a service and setting up the
rules to run on only one particular node in the cluster can be an extremely
useful capability to have.

When creating a new service, you can set an optional PDB property at
creation time, which can be modified at any time after. The PDB property is
important because it associates the service to a particular PDB.

If a user connects to a service that does not have a value specified for the
PDB property, the user name would be resolved in the context of the root
container. However, if the value is specified for the PDB property, the user

name will be resolved in the context of the specified PDB.
Note the following regarding service creation:

 Services become active (listed in v$active_services and registered
with the listener) only when the PDB is opened.

 Service names must be unique within the CDB, but they must also be
unique between all databases using a specific listener.

 When using Oracle Restart or Oracle Clusterware, you can use either
the SRVCTL utility or the DBMS_SERVICE package to add, modify,
and manage new services. Using the SRVCTL utility in this case is
recommended.

 The PDB property must be set using -pdb <PDB> when you’re using
SRVCTL. If you’re using the DBMS_SERVICE package, the PDB
property will automatically be set to the current connected container,
so make sure you connect to the correct PDB before creating the
service using DBMS_SERVICE.

 The PDB property cannot be changed with the DBMS_SERVICE
package. The service will need to be re-created from within the
correct PDB.

 If you are not using Oracle Restart or Oracle Clusterware, the
DBMS_SERVICE package is used to add, modify, or remove new
services.

 Stopping a service using the SRVCTL utility does not change the
status of the PDB it is associated with. The SRVCTL stop command
will affect only the service, not the PDB.

 When you unplug a PDB, the service will not be removed, so this
should be managed manually. The same applies when a PDB is
dropped. If the service is no longer required, it should be removed
manually.

Creating a Service with SRVCTL
Creating services with the SRVCTL command line utility is very easy, and
you can quickly understand why you should be using this with Oracle Restart
or Oracle Clusterware.

In the next two examples, two new services will be created: the first uses
a single-instance configuration, and the second uses a two-node Oracle RAC
cluster.

Adding a Service for a PDB in a Single-Instance Database The CDB
database CDB1 consists of PDB1 and PDB2. It is a single-instance database
in which Oracle Restart is used. Each of the PDBs already has the default
service created and registered with the default listener. In addition, the
following services are required:

 PDB1 will use service CRMDEV.

 PDB2 will use service HRDEV.

As the Oracle database software owner, which in this installation is the
user name oracle for the UNIX environment, set the environment to the
correct Oracle Home and use the srvctl command to add the two services.
Then review their status and start these two services. See the code blocks that
follow for more detail on these steps.

1. Create the services.

2. Review the service status.

3. Start the services.

4. Show the status of the services following the startup.

Now that the services are created, review what the listener knows. Notice
that these newly added services are also registered with the listener, as per the
extracts from these listener status commands. Here’s the first one:

And here’s the second one:

Reviewing V$SERVICES, you can also see the newly created services:

You can now use these new services to connect to the respective PDBs—
here’s an example:

Adding a Service for an Oracle RAC PDB The steps for adding a new
service for a PDB under Oracle RAC are almost identical to those used in the
preceding example for a single-instance database: the SRVCTL utility is
invoked to add the service. In this case, however, you need to keep in mind
one particular question: Do you want the service to be enabled on all the
instances, or just one?

In the next example, the Oracle RAC database, RCDB, consists of two
nodes running two PDB databases: RPDB1 and RPDB2. The requirement is
that RPDB1 be accessible only via node 1 (instance 1, RCDB1) and that
RPDB2 be accessible from both nodes. By creating two services, this can
easily be achieved.

To create the service for RPDB1 to run from only instance 1, we use the
following commands, executed as the Oracle Database software owner,
which is the oracle UNIX user in this case.

1 Create new service CRMPRT to run on one instance only.

2 Create new service CRMPRD to run on both instances.

3 Review the status of the service.

4 Start both services.

5 Review statuses following service startup:

The status output shows that the service CRMPRD is now running and
available on both instances in the Oracle RAC cluster, whereas the service
CRMRPT runs only on the preferred instance, RCDB1. Users or clients will
be able to start using them for connections—here’s an example:

To modify or remove services, you can use the modify service or
remove service option provided by the srvctl command:

NOTE
For more information on using the SRVCTL utility, use the srvctl
-h command to obtain detailed help options. If you specify srvctl
add service -h, you can also obtain help specific to the addition of
new services. Substitute with the modify or remove keyword to list
information on the respective help option.

Creating a Service with DBMS_SERVICE
When using environments in which Oracle Restart or Oracle Clusterware is
not installed, you need to use the DBMS_SERVICE package to create and
manage new services. As mentioned, when creating new services for a
specific PDB, you need to ensure that you are connected to that PDB when
performing this operation. Otherwise, the service will be created in the
context of the PDB you are connected to at the time, as the PDB property is

set to the connected PDB.

1. Switch to the PDB and create the new service.

2. Review the services.

3. List all the active services.

4. Start the service and review active services.

In this section we have demonstrated how easy it is to create new services
for a PDB, using either the SRVCTL utility or the DBMS_SERVICE
package.

Create a Dedicated Listener for a PDB
In some cases, you may need to use a specific dedicated listener port for one
or more PDBs. This will require that you create a new listener and then
ensure that the PDB is registered with it. In this section, we will show you
how this can be done.

In a consolidated database environment with a large number of PDBs
within a CDB, you may need to segment some PDBs off or, from a security
point of view, maintain both encrypted and unencrypted connections. To do
this, you first create a new listener.

In the following example, we will call the listener LISTENER_PDB and
have it listen on port 1531. The following entry is added to the listener.ora
file to introduce the new listener:

Once the new listener entry has been added, we can start it with the
lsnrctl start listener_pdb command. When the listener is started, we can
then add a net alias to the tnsnames.ora file:

We are now ready to configure our PDB, which happens to be PDB1 in
this case, to use this listener. We update the LISTENER_NETWORKS parameter
specific to the PDB:

The syntax for the LISTENER_NETWORKS parameter is as follows:

NOTE
The listener_address string is an address (or address list) that
resolves to a specific listener. An alias can be used, which is the
case in the example used here, although it requires that you add an
address entry into the tnsnames.ora file prior, as shown in the code
block Add net alias to tnsnames.ora file.

If we now review the listener, we will notice that the PDB1 services are
registered automatically by the LREG process, following the execution of the
preceding commands.

Now that the PDB is registered with the listener, we can connect to it
using the new listener that is running on port 1531, as follows:

If you are not using the easy connect string connection method, but are
instead using a Net Service name using the tnsnames.ora file entries, you
need to make sure to add the following entry to the tnsnames.ora file to
reflect the new port change for this PDB:

Summary
In this chapter, we covered only the tip of the iceberg of information
available regarding Oracle networking to highlight key features and
functionalities you should be aware of when using the Oracle Database 12c
Multitenant option. Creating and managing services in a multitenant
configuration turns out to be less complex than you might have thought, even
when using Oracle RAC. Using the SRVCTL utility or the DBMS_SERVICE
package can help you achieve the required results quickly.

Now that you know how to connect, the next logical topic to address is

security. For many DBAs, this is a daunting and intimidating topic, but in the
next chapter, we will systematically walk you through its key aspects,
including explaining the difference between different types of users, roles,
and permissions, along with discussions about encryption, isolation, and the
lockdown of profiles.

CHAPTER
6

Security

So far in Part II we have described a number of operations you can
perform on pluggable databases (PDBs) and the many different ways
to connect to them. At this point we also need to factor security

considerations into the mix, as the most prevalent attack vector is an abuse of
database privileges. Rather than granting administrator rights too widely, we
should instead apply the principle of minimal privileges. In 12c, with the
Enterprise Edition and the Advanced Security option, the privilege analysis
functionality offered can be a great help in this area.

With respect to multitenant, your effective user security administration
starts by thinking about which users should have access only to specific
PDBs, as users and roles can be created common or locally. Privileges can
also be granted common or locally, and beyond this, multitenant (including
single-tenant) brings additional fine-grained control via powerful commands,
courtesy of lockdown profiles. Of course, when you issue powerful privileges
locally to a PDB, you need to prevent any side effects on the container
database (CDB), and 12.2 introduced a number of PDB isolation features to
mitigate this.

In terms of data security, Oracle Virtual Private Database is still an
option to limit access at row level, as is the Oracle Database Vault to protect
against rogue database administrators (but we will not detail them here,
because they’re not specific to multitenant). Another type of possible attack is
network sniffing—that is, reading data directly off the network—and network
encryption is available in all Oracle 12c editions without options. Bulk data
sets that leave the confines of the company premises, such as backups stored
off site or in the cloud, are also potentially vulnerable. We will cover backup
encryption in Chapter 7.

Finally, we may want to protect against unauthorized access at disk level,
and this is highly recommended in a multitenant database, where data from
different sources will be consolidated on the same CDB. This protection
becomes mandatory when we put our data on a public cloud, and for these
reasons we will cover Transparent Data Encryption at the end of this chapter.

Users, Roles, and Permissions
At a high level, when you connect to an Oracle Database, you do so with a
database user that is declared within the database, in the dictionary, along

with the user’s privilege definition. We have not yet defined which container
this user information is stored in, and they can actually be common and
thereby stored in CDB$ROOT or local and stored in a PDB.

Common or Local?
A common user’s information is stored in CDB$ROOT and exists in every
single PDB. You create common users for the CDB administrators or for
users that have the same identity in all tenants. In both cases, they must
connect to CDB$ROOT to change their passwords. In contrast, a local user is
stored in a single PDB and exists only in that PDB.

For users, roles, profiles, and privileges, we have to work with the key
words common and local. But before we go any further, let’s ensure that we
are all on the same page in terms of our definitions of a user and a role in the
Oracle Database, because this is not an obvious given.

What Is a User?
In Oracle, a user and a schema are synonymous—or at least that was the case
before the introduction of multitenant. When you create a user, you implicitly
create a schema for the user objects, and when you have a schema, its owner
is a user. Because this chapter is about security and not database objects, we
will use the term “user” here. However, keep in mind that the one-to-one
relationship between users and schemas has changed with multitenant, and
one common user is now a different schema in each PDB.

A user is just a name that is employed when you connect to the database,
and a session is always associated with a user. No matter which way you
connect to the database, you will have a username, and this user is the vehicle
that enables a session to perform operations on the database. You grant
privileges to the user, and the connected user can enact whatever is permitted
by those privileges.

Because it is highly likely that you will have several users with the same
allotted privileges, or users with requirements for the same groups of
privileges, you can define roles. In this way, you grant specific privileges to a
role, and then grant the role to the users. Roles are also useful to enable the
switching of users from one group of privileges to another. For example, the

same user may have a read-only role when connecting with SQL Developer
and a read/write role when connected through the application, because the
application can encapsulate some form of access control.

User and role definitions are actually stored in the same data dictionary
table, USER$, where the TYPE# defines whether it is a user (1) or a role (0):

You might think that when you have no database, you would have no
user definitions, because there is no dictionary yet; however, as it turns out,
some users are actually hard-coded. Here we connect to an “idle instance” as
we would do when wanting to create a database:

SYSDBA privilege is mapped to the SYS user and SYSOPER privilege
is mapped to the PUBLIC role. The authentication is handled through OS
groups or via a password file, because there is no dictionary at this stage.

A number of users and roles are generated when you create the database,
and these are maintained by Oracle. Starting in 12c, multitenant or not, there
is an easy way to identify system users, because they have the
ORACLE_MAINTAINED column set to TRUE in DBA_USERS. The creation of
new users and roles is handled with the CREATE USER and CREATE ROLE
statements. Both statements have a new optional clause in 12c multitenant,
CONTAINER=CURRENT or CONTAINER=ALL, to define whether they are to be
created for the current container or are to be common to all of them.

CONTAINER=CURRENT
When connecting to a PDB, we can connect to the root and ALTER SYSTEM
SET CONTAINER, but, as we saw in the previous chapter, connecting via the
listener to a service switches the session directly to the service’s container:

Once connected, we can then create a user:

In fact, when connected to a PDB, we can create only local users, so the
container clause is not mandatory and defaults to local:

If we try something else, we get an error:

So basically nothing changes here when working in a PDB; we simply
create users in the way we are used to, and we can add the
container=current just to be explicit.

When we want to create a user with Oracle Enterprise Manager,
connected to a PDB, we don’t have the choice. We receive a message, “Note:
Created user will be a local user since you are in PDB container,” as shown
in Figure 6-1.

FIGURE 6-1. Creating a local user in OEM 13c

CONTAINER=COMMON
Now let’s see what we can do from CDB$ROOT:

First of all, trying to create a local user fails:

When dealing with security objects (users, roles, profiles), what we create
in the root container must be common. But there is something else to be
aware of:

The best practice is to avoid mixing common and local users in the same
namespace by setting a prefix for all common users. The prefix is set by the
parameter COMMON_USER_PREFIX which defaults to C##:

You can change this prefix and can even set it to null string, although we
don’t recommend this. The problem with doing this can occur after some
PDB movement operation, when the same name is used by both a common
and a local user. Having a prefix reserved for common users brings clarity
and prevents such conflicts.

Here is how we create common users connected to CDB$ROOT. Note
that the CONTAINER=ALL clause is not mandatory because it is implicit, and it
is the only valid value in this context:

Figure 6-2 shows this user creation within OEM, clearly displaying the
information, “Common user name must begin with ‘C##’”; it is a common
user because it is created from root. Note that this message is static and does
not take into account changes made to COMMON_USER_PREFIX.

FIGURE 6-2. Creating a common user in OEM 13c

We can check the users from CDB$ROOT:

In this example, we query only for users we have created recently. Note that
the Oracle-maintained users (such as SYS, SYSTEM, and so on) are common
users even if they don’t have the common prefix.

And here’s the same query from our PDB:

In the PDB, we inherit the common users along with those defined
locally. Once again, we have not displayed the Oracle-maintained users or the
admin user that is generated when the PDB is created.

Local Grant
When in a PDB, you see local users in addition to common ones and you can
grant them privileges. Of course, as you are in a PDB, the privileges are
granted only at the PDB level. So, for example, if you grant CREATE
SESSION to PDBUSER1, this user will be able to connect to its PDB, with
the ability to grant that privilege to others, only when done so with the admin
option, as follows:

This is, in fact, the only possibility, because in a PDB you can grant
privileges only locally. The CONTAINER=CURRENT clause is the default, so it is
not mandatory, and if you try something else you get this:

You can grant to a common user, but this will be for the local context
only. For example, here in a PDB we grant the common user C##USER1 the
right to connect to our PDB:

The default, and only possibility, is CONTAINER=CURRENT, which we have
omitted. We can see that the grant is there in PDB with COMMON=NO:

However, the C##USER1 is known to all containers but does not have
the CREATE SESSION privilege set for these:

In a PDB, you can create users and roles and grant privileges to them
locally. In addition, you inherit common users and roles and can also grant
privileges to them locally. It is entirely possible for a common user to have
different privileges specified in every PDB; the user is the same, because it is
common, but it has different behaviors and privileges in each PDB.

Common Grant
In addition to local grants, we can also grant common privileges from
CDB$ROOT. For the moment, our three users have no such privileges
defined, so let’s look at an example. As we did in our PDB, we can grant
CREATE SESSION to the C##USER1 when in CDB$ROOT:

This means that C##USER1 now has the right to connect to

CDB$ROOT, in addition to the right to connect to PDB, which was just
granted. We can also equip C##USER1 with the ability to connect to any
PDB, whether currently existing or to be created later (which we show for
theoretical rather than practical purposes) in the CDB:

So let’s see the current grants from CDB$ROOT:

Both grants are there, even if the local ones are redundant, as long as the
common ones exist.

NOTE
Be careful with the default value for CONTAINER in a grant
statement. The default is CURRENT, even when in CDB$ROOT,
which means the privilege will be granted only locally. This is
different from the CREATE USER default. Our recommendation is
always to specify the CONTAINER clause.

Let’s use the CDB_SYS_PRIVS that shows the result from each
container’s DBA_SYS_PRIVS (Chapter 9 will detail these cross-PDB
views):

These results mirror the output from our previous examples, in that we
see a local grant for CDB$ROOT (CON_ID=1) and PDB (CON_ID=3), and
common grants made from CDB$ROOT, which are visible in all containers.
From an administration perspective, this lack of clarity does not make sense,
and it is better not to mix common and local privileges for the same users.

Conflicts Resolution
Data movement and database plug-in will be addressed in Chapter 9, but you
are already aware that multitenant and PDBs bring agility in data movement
and cloning. However, you can only imagine the kinds of conflicts you may
encounter when plugging in a PDB with a local user that shares the same
name as a common one, or vice versa. Oracle will attempt to merge them, but
you may have to resort to resolving conflicts manually.

Let’s take an example here with the C##USER1. We unplug the PDB and
drop the C##USER1:

Then we plug it back in—that is, a PDB that had a common user then
plugged into a PDB without one:

This shows a common user in the PDB, although it is actually unknown
from the CDB$ROOT:

Here you see the process of inheritance that we have described as
working differently. Common users are not shared; instead, they are
propagated to containers. In our example, we dropped the common user but it
remained in the unplugged database, with local and common grants all intact.

But no user at CDB$ROOT means we cannot connect:

So are we able to connect to the PDB, because the user is there, with the
CREATE SESSION privilege?

In fact, because Oracle was not able to merge the common user
automatically with CDB$ROOT, as that user did not exist in CDB$ROOT,
the user has been locked until we resolve this issue manually.

If we want to keep this user as the common user, we have to create it
from CDB$ROOT:

To avoid such conflicts, we need to close the PDB first:

All conflicts are then resolved at open, because the common user now
matches in both containers:

There is no need to unlock the account—everything is OK, and we can
successfully connect to the PDB:

Of course, if we want to connect to CDB$ROOT with this user, we need
to grant CREATE SESSION from the root, so it’s best to grant it with
CONTAINER=ALL and revoke the CREATE SESSION privilege that was
granted locally.

Keep It Clear and Simple
Be assured that there is nothing to be afraid of here, because it is all very
logical if you understand that, physically speaking, the commonality is
neither a link nor a logical inheritance, but only the propagation of privileges
when DDL is issued. Second, any conflicts that may appear when plugging in
a PDB coming from another CDB are resolved when the PDB is opened. And
don’t forget to check PDB_PLUG_IN_VIOLATIONS for more detail.

We can’t include all the conflicts that may appear, but let’s imagine a
common user with a local function to validate the password. You must ensure
that the function exists in all PDBs. Our recommendation is to keep it simple,
and use the prefix, which enforces a name convention to make it clear about
what is common or local. In general terms, common users are mainly for
administrators, while local users are for application schemas. Note that if you
want to use external authentication with common users, you can match
COMMON_USER_PREFIX with OS_AUTHENT_PREFIX.

With regard to the common user prefix, you should be aware of two
additional points. First, the comparison of the prefix is case-insensitive, and

second, even if you change it from its default, the C## is still forbidden for
local users, so you will have two prefixes that can lead to ORA-65094:
invalid local user or role name.

Note that in 12.2 it is possible to have your own root for your application,
which is called an application container, where you can manage application
user commonality in the same way. There is the APPLICATION_USER_PREFIX
for this, which is empty by default, and it cannot be set to C##.

CONTAINER_DATA
Common users can see information from the whole CDB, so they can query
the V$ views because they show information about the instance, and the
instance is common. They can also query the CDB_ views, which collate
information from the DBA_ views, from each of the containers. However, the
CONTAINER_DATA parameter option is a means of implementing fine-grained
control, and it enables the administrator to restrict common user access to a
subset of containers. Here is an example in which we allow C##USER1 to
see V$SESSION common data only from CDB (CON_ID=0), CDB$ROOT
(CON_ID=1), and PDB1 (CON_ID=4):

The ALTER USER statement to authorize container access from a query on
V$SESSION at root level is as follows:

We can then check what is now permitted, from the DBA_CONTAINER_DATA
dictionary view:

Note that the object to which the restrictions apply is V_$SESSION here,
which is the dictionary view on the V$SESSION fixed view. However, the
V$SESSION in our statement is actually the public synonym that has been
resolved to that view. This is interesting to know, because if you attempt to
do the same as SYS you will get an error (ORA-02030: can only select from
fixed tables/views): from SYS the V$SESSION is the fixed view itself. So if
you want to do something similar from SYS, you have to name the dictionary
view directly:

In the following, we are connected as SYSTEM and can, therefore, count
sessions from all containers:

But if we attempt the same with the C##USER1 user, we don’t see
information from PDB2 (CON_ID=5), because it was not included in the
authorization list:

Remember that this restriction is only for queries executed from
CDB$ROOT. And, as we have granted the SET CONTAINER to C##USER1
on container PDB2, this user can always switch to it and view the sessions
there:

The same result is also possible by connecting directly to PDB2 as
C##USER1, which has the CREATE SESSION privilege there. So don’t
forget to restrict access from all possible avenues: CONNECT_DATA for
query from CDB$ROOT, and GRANT/REVOKE within the PDB itself.

Roles
As with users, you can create roles that are either local or common. However,
keep in mind that a big advantage of the multitenant architecture is the ability
to separate user metadata from system metadata, so don’t mix system roles
with user roles. If you want to create roles with a subset of the DBA
privileges for your administrators, you can create them common, and perhaps
grant them to individual local users in PDBs. But as far as user roles go, these
should pertain to a specific PDB.

Proxy Users
Proxy users enable you to connect to a user without knowing the user
password. This is useful for a DBA who needs to create an object, which can
be created only by its owner, such as a database link. It is also a good way to
audit who logs in by name and still behaves as if logged in by the schema
user. This option is still possible in multitenant, which means that local users
can actually proxy through a common user. For example, in PDB1, the DBA
enables the common user C##USER1 to be a proxy user for the local user
APPOWNER:

The C##USER1 can then connect to APPOWNER by providing his own
password:

And from then on, everything functions as if connected with
APPOWNER directly.

It’s a good practice to disallow direct logon so that you are sure to audit
who was connected by their actual usernames. You cannot lock the account,
because proxy connections will be blocked as well, but you can set a
password that nobody knows. There’s also a better option, but this was not
yet documented at the time of writing:

With this clause, the connection can be performed via a proxy user. This
behavior can be canceled with the following:

This proxy only connect option is interesting, but our recommendation
is to wait until it is officially documented before using it.

One final note about proxy users—for security reasons, if you connect as

a common user through a local proxy user, you are locked in the container of
the proxy user. Here is an example in which we allowed the common user
C##USER1 in PDB1 to connect through the local user ADMIN:

When the common user connects directly to the PDB, the user can
change to another container later, as long as the user has the SET
CONTAINER privilege:

However, this operation is not allowed when connected through a local
proxy user:

This is a security lockdown hard-coded since 12.1, and 12.2 has brought
more possibilities to control this through lockdown profiles.

Lockdown Profiles
PDBs bring a new separation of database administrator roles. The DBA
administers the CDB but can delegate the administration of individual PDBs.
Let’s take an example of a CDB that is a dedicated development
environment. The fast and thin provisioning features we will see with
snapshot clones make it possible to give a PDB to each developer. Because it
is their database, the CDB administrator can grant developers the DBA role

for the PDB, so that developers can do whatever they want there, as long as
their privileges are limited to this PDB.

In 12.1, this strategy is almost impossible to implement. Even if the DBA
role is granted locally only to a local PDB user, this privilege enables the user
to do things that can potentially break the CDB or the server. For example, a
local DBA can create files wherever he wishes, can execute any program on
the host (which will run as the oracle user), and can generate massive trace
files. If we want to limit what a local DBA can do, we need better control
over these privileges, and this is why 12.2 introduced lockdown profiles.

Here, connected to CDB$ROOT, we create a profile for our application
DBAs:

Disable Database Options
With profiles, we can disable access to some features available only with
licensed options. For example, if we don’t have the partitioning option, we
must be sure that nobody will create a partitioned table, so let’s disable it
from our application DBA profile:

We can now apply the lockdown profile to PDB1 simply by setting the
pdb_lockdown parameter for that container:

So now let’s try to create a partitioned table in that PDB1:

As you can see, this is impossible because the feature has been disabled.
The ENABLE and DISABLE clauses of ALTER LOCKDOWN PROFILE can also

be specified with an ALL option:

Disable ALTER SYSTEM
The ALTER SYSTEM privilege is very powerful, but with the GRANT syntax
you can only allow or disallow it. However, with lockdown profiles you have
fine-grained control, because you can enable or disable specific clauses of the
statement. Let’s say, for example, that you want to allow your developers to

kill sessions in their PDB, but no other ALTER SYSTEM activities. From
CDB$ROOT you can add the following rule:

With this, a user in the PDB who has the lockdown profile assigned will
get an “ORA-01031: insufficient privileges” message for any ALTER SYSTEM
command, except an ALTER SYSTEM KILL SESSION.

The scope of control can be defined further with the ALTER SYSTEM SET
command, because you can even control which parameters are allowed. For
example, the following will allow only some parameters to be set at the PDB
level:

We can query the dictionary to see these defined:

From a PDB where this lockdown profile is set, we can set one of these
allowed parameters:

But we will receive a privilege error when trying to set one that is not in
the permitted list:

When disabling the change of a parameter, we can also define a value to
be set at the same time, when the PDB_LOCKDOWN parameter is set:

This is an effective means of creating a lockdown profile with several

parameters set to values that cannot be changed later.

Disable Features
We will not go into detail on disable features here, but in the same way that
you can disable database options, you can also disable features. For example,
the following command disables the specified PL/SQL package usage:

NOTE
You can disable all networking packages with the NETWORK_ACCESS
feature name.

PDB Isolation
In 12.2, in addition to the PDB_LOCKDOWN parameter that can be used to set a
lockdown profile to limit network access, you can also limit the interaction
with the OS file system and processes.

PDB_OS_CREDENTIALS
From a dbms_scheduler job, or through an external procedure, it is possible
to run a program on the host server. But, more than likely, you will probably
not want to let the PDB administrator run anything with the oracle user
privileges. In this case, you can create a credential, from the root, defining the
OS user and password, and also including a domain if you are on Windows:

You can limit a PDB to this user when running jobs or external
procedures:

PATH_PREFIX
In a similar vein, a PDB administrator can create a directory and write files
anywhere on the system. This was not a problem before multitenant, because
the DBA controls both the database and the host, but in multitenant you can
delegate some administration tasks to the PDB administrator and then need
more control on how the PDB admin can interact with the host. Since 12.1, it
has been possible to define a PATH_PREFIX as the root of all directories
created in a PDB, which is then defined with a relative path from there. Note
that you cannot change the PATH_PREFIX after creation.

CREATE_FILE_DEST
Another way to write files onto a server is to create tablespaces and add
datafiles, and this is also an operation the CDB administrator needs to
restrict. Starting with 12.1.0.2, you can now set the CREATE_FILE_DEST to a
directory specific for the PDB, so that datafiles are written there. However, a
user with CREATE or ALTER TABLESPACE privileges can still specify a
fully qualified filename, and then write everywhere the oracle user can write.
OS credentials are not used here.

NOTE
We have opened an enhancement request regarding this gap, and we

hope to have the option to lockdown a PDB administrator to use
OMF only, without specifying an absolute file path or a disk group,
in the near future.

Transparent Data Encryption
Encrypting data on disk is a key part of a sound security strategy; however,
authorized users can still access the data unencrypted. This means that the
database has the decryption key onboard, and such encryption does not
prevent an attack that accesses the data through the database software.

There are still other paths to compromise the system, such as getting
access at OS level or directly accessing the disks, and data encryption does
protect against this.

There are essentially two ways to implement a sound security strategy:
programming access procedures and encrypting data ourselves, or using
Transparent Data Encryption (TDE).

In the first case, it’s the application that does the encryption and
decryption—that is, the database stores and presents the encrypted data,
oblivious to the fact that it is encrypted. The disadvantages of this method are
that it is more difficult to implement, and we have to be very careful to
implement key management correctly; it’s no use encrypting the data if an
attacker can compromise the keys himself.

Second, Oracle Database provides, as part of the Advanced Security
Option, another solution: TDE. This is part of the Oracle Database, and it’s a
trusted, proven, and supported solution that is well documented; many DBAs
are familiar with it. If we are really serious about security, TDE also supports
hardware security modules, which are dedicated pieces of hardware that
securely store encryption keys.

Setting Up TDE
Each encrypted database has a master key that is used to generate all
additional keys, whether for separate tables or tablespaces. This master key is
the only one stored outside of the database itself, and it’s the only one that the
database needs to open.

There are several reasons why the Oracle Database uses multiple keys

internally, and not just the master. First of all, encrypting data with the master
key directly can be slow and expensive, especially hardware-stored keys,
which have very limited throughput and can be licensed by capacity. In
addition, we can change the master key when we decide to do so—for
example, if the key is compromised, or simply to alter master keys on a
schedule. Changing the master key re-encrypts the subordinate (table) keys,
but not the data in the database itself.

Let’s go through an example of setting up TDE for a multitenant
database. In this example we will use a software keystore, not a hardware
one.

Setting Up the Keystore Location
A software keystore is essentially a file in a specified directory. Oracle
Database also supports wallets for storing secure information, which enables
scripts, for example, to log in without hard-coding passwords. Conceptually,
wallets are very similar, and the way to administer them is also similar to the
TDE keystore. In fact, in 11g, both were called “wallets,” and some syntax
and documentation still refer to both by this name; even the location for each
can default to the same value. Nevertheless, we recommend keeping these
separate, as they do contain different data with different purposes.

The location of the keystore is defined in sqlnet.ora. It is important that
you know that each CDB or non-CDB has its own keystore, so if we have
multiple databases running on the same host, we must configure a path that is
different for each database.

We could create multiple sqlnet.ora files and make sure each database is
started with the correct one, but the easiest method—and the least error-prone
—is to include the ORACLE_SID in the path.

Sqlnet.ora is in the TNS_ADMIN path, which is
$ORACLE_HOME/network/admin by default. The entry for database
encryption can be set as follows:

Creating the Keystore
Creating the keystore involves one simple command in the root container. All
the commands that work with the keystore need SYSKM or ADMINISTER
KEY MANAGEMENT privilege.

NOTE
This command requires a full path to the directory where the
keystore will be created. This must be the same as we specified (or
will specify) in sqlnet.ora, and be aware that the command does not
check that these two paths match. This command is new in Oracle
Database 12c, replacing alter system set encryption commands
from earlier versions.

A keystore created in this way will require the same password to open.
Oracle Database also supports autologin wallets, which alleviate the need to
specify the password. (Refer to the documentation for more details.)

Setting Up Using Cloud Control
Most of these operations can also be performed using Enterprise Manager
Cloud Control. Figure 6-3 shows the TDE home screen, from which we can

set up the keystore and manage the keys.

FIGURE 6-3. TDE in Enterprise Manager Cloud Control

Opening the Keystore
Before anyone can use the keystore, we must open it in the root container and
then in the PDBs. Only then we can set up the master key and read or modify
the encrypted data.

We can also use the CONTAINER clause syntax introduced by multitenant,
and then in the root container, open the keystore in all PDBs:

It is in this step that we will find out whether the configuration of the
wallet location has been done correctly—if not, we will receive an error like
this:

Creating the Master Key
Now that we created an empty keystore, the obvious next step is to generate a
master key and store it in the keystore; this is where things differ for a
multitenant database. As noted earlier, each CDB has one keystore; however,
in that keystore, each PDB has its own master key. In Oracle Database 12c
Release 2, we should be able to specify keystores specific for each PDB, too,
meaning that plugging and cloning would require just copy of the keystore,
not an export.

This means a bit more work is required during the setup, but it also
means that PDBs can be unplugged and cloned and moved into another CDB
(see Chapter 9), with their own key that we move along. This was always an
issue with transportable tablespaces, in that they are encrypted by their
database key, and the target database, if also encrypted, can’t accommodate
two different master keys.

To create the new key, we run the following command:

This can be run in the container for which we want to create the key—
either CDB$ROOT or a PDB. And, again, we can add the CONTAINER=ALL
clause when running the command in CDB$ROOT to create keys in all
PDBs. However, this also sets the same descriptive comment (the tag) for all
keys, which may not be desired.

It is also mandatory to specify a backup of the wallet, so that, should the
operation go wrong, we would still have the previous copy and would not
lose the keys. So, after adding the first key, we now have two files in the
wallet directory, as in the following example:

Verifying the Created Keys
We can now simply check which keys have been created so far:

As you can see, the key ID is a long, generated base64 encoded value,
while the tag value is a human-readable comment.

Encrypting the Data
Encryption of the data is defined at the PDB level, using the same syntax and
rules as in a non-CDB database.

TDE can encrypt column(s) in a table, which we can request by simply
adding the ENCRYPT keyword:

The second way TDE can work is at the tablespace level, encrypting all
data in this entity:

We can see a list of all TDE-encrypted columns in
DBA_ENCRYPTED_COLUMNS:

And the list of encrypted tablespaces is displayed in
v$encrypted_tablespaces:

Plug and Clone with TDE
When a PDB is copied/moved to a new CDB, the target CDB needs to know
its encryption key. If the operation is a clone, Oracle will do this for us

automatically. But if we plug in/unplug a PDB, we must ship the master key
along with the XML file and the datafiles. This is achieved by exporting the
key on the source into a password-protected file:

We then proceed with the plug-in as per normal (see Chapter 9). The
PDB will refuse to open and will instead remain open in restricted mode. But
now that the target database knows about the PDB, we can connect or switch
to it and import the keystore export file, as follows:

From here we can close and then open the PDB again, and access the
encrypted data.

TDE Summary
TDE is a feature that is, on paper at least, easy to use, but it comes with its
own limitations, and it is a key management process that is complicated at
times.

It’s important that we build a thorough understanding as to how this
feature works if we are going to use it. After all, this is data security we are
talking about—an area where it is often difficult to assess whether we have
done something wrong, until it’s too late.

TDE is a topic that warrants a book on its own, and we have only lightly
scratched the surface here. The message is clear, however: TDE still
functions the same as before, with the only change in multitenant being one

key for each PDB, and thus multiple keys in a single CDB.

Summary
In a multitenant environment, particularly in the cloud, all the features
covered in this chapter are must knows—and must use. Some of these can be
distilled into simple directives, such as: don’t have all your database
administrators connecting as sysdba, and the system administrators should
have their common usernames to administer the CDB. It is probable that all
other users will be local to PDBs, so their actions are appropriately isolated.
Moving beyond this type of access protection, encryption is a powerful
means of preventing illegitimate access to data, although this is not sufficient
protection alone. Even with the best security policy, an error may occur that
results in some data being lost or corrupted. This brings us to the most
important facets of data protection, backup and recovery, which are covered
in the next chapter.

PART
III

Backup, Recovery, and Database
Movement

B

CHAPTER
7

Backup and Recovery

ackup and recovery is an exciting topic. Creating backups is
straightforward, but many DBAs do not spend much time digging
into this area until an actual restore and recovery is required. Then all

the books and notes are dusted off in search of the correct commands or
processes to follow. Although this might not be optimal, it does highlight
something of utmost importance when talking about backup and recovery:
documentation. And this brings us to the goal of this chapter—to document
the key concepts and areas relative to backup and recovery when using the
Oracle Database 12c Multitenant option.

In this chapter we will first review the basics to highlight a number of key
aspects that will help you quickly establish effective backup and recovery
procedures in your multitenant environment. What you will notice as we
progress is that, in many cases, it does not make a difference whether you are
using a container database (CDB) or a non-CDB; overall, the principles are
similar, if not identical, for both.

Back to Basics
Our encouragement is this: Do not be afraid of backup and recovery. In fact,
the more time you spend on planning and testing your backups, the easier the
second part—restore and recovery—will become. But before we dive into the
detail, let’s consider two key areas:

 Hot versus cold backups

 ARCHIVELOG mode versus NOARCHIVELOG mode

NOTE
In this chapter a number of examples will make use of the RMAN
TAG option. Strictly speaking, this is not necessary, but it is a
recommended option in certain scenarios because it makes it easier
for you to identify specific backups. For more detail on the use of the
TAG option, refer to the Oracle online documentation.

Hot vs. Cold Backups
Nowadays, there are few references to cold backups. So what is this and why
would you use it? In short, cold backups (also called consistent backups) are
created when a database is not open for transactions—that is, it has been shut
down with the IMMEDIATE, TRANSACTIONAL, or NORMAL option. The effect of
one of these clean shutdowns is that when the database is restored following
this type of backup, no additional recovery is required to bring it to a
consistent state, because it was in this state when the backup was performed.

In this day and age, most companies simply cannot afford downtime on
their primary systems, so the cold backup is not the ideal backup method,
because it requires an outage (planned downtime) on your primary database.
You may ask, why have downtime when creating backups at all, if this is not
required? The answer depends on an organization’s requirements, but a cold
backup is still an option for the modern DBA, even when using the
multitenant option.

Performing a cold backup is simple: the database is closed when backups
are being performed. If RMAN is not used to perform cold backups, the
database must be completely shut down. When RMAN is used, the database
must be in a mounted state. Here’s an example of creating a cold backup of a
CDB:

In this example, a consistent backup of the CDB is performed and the
backup is stored on disk in the /backups folder. By default, RMAN backup
sets are used with the backup command. If required, you can also perform a
cold backup using image copies; to do so, you would replace the fifth line in
the preceding code with this:

As you can see, creating consistent cold backups is easy. The database can be
in NOARCHIVELOG mode when you performing them. But the downtime
required that renders these types of backups is not acceptable for most.

This brings us to hot, or online/inconsistent, backups. In contrast, when
creating these backups, the database may be online—open read/write.
However, there is one key requirement when you are performing hot
backups: the database must be in ARCHIVELOG mode. For most DBAs, this
is likely to be the default option when creating a new database in any case.
Enabling ARCHIVELOG mode is easy and brings with it the advantage of
enabling you to perform backups while the database is in full use. Yes,
backups created in this fashion are considered inconsistent, but by using the
archive logs that are generated during the process, the backup can be restored
and recovered to a consistent state so that the database can be opened again.

Archive logs assist in resolving Oracle split blocks, which may occur
during hot backups. Oracle data blocks, the smallest units of data used by a
database (which is made up of multiple operating system blocks), include
identifying start and end markers. The start and end markers of blocks are
compared during recovery, and if they do not match, the block is considered

inconsistent and the redo copy of the block is required to recover
(reconstruct) the block to a consistent state.

NOTE
For more detail on split blocks, refer to Oracle Support Note
1048310.6 and the Oracle Database 12c documentation regarding
the LOG_BLOCKS_DURING_BACKUP initialization parameter.

Enabling ARCHIVELOG mode in a CDB is no different from doing it in
a non-CDB configuration:

You can use the SQL command archive log list to confirm whether a
database has ARCHIVELOG mode enabled, or by reviewing the
V$DATABASE.LOG_MODE value.

NOTE
When you enable ARCHIVELOG mode in a CDB, an outage is
required, because the database needs to be restarted in a mount
state. Also note that ARCHIVELOG mode can be set only at the
CDB level.

To perform a basic backup on a CDB database that is open and has
ARCHIVELOG mode enabled, run the following commands:

With the fundamentals of hot and cold backups now covered, let’s review
some of the default RMAN configuration options before we get into the
details of backup and recovery concepts in a container database environment.

RMAN: The Default Configuration
By default, to back up a database using RMAN, the simplest command is
backup database. It doesn’t get any easier than that! For most purposes,
however, this simple command is not really adequate; to get the most from
your backups and to provide more options, you have to go a bit further than
this. But before we launch into this, we need to discuss the default RMAN
configuration options.

When you run the backup database command, a number of default
options are invoked behind the scenes. Many of them are perfectly acceptable
and may never need changing, but by adjusting a key few, you can make
backup and recovery of your Oracle 12c database even easier.

Use NLS_DATE_FORMAT
The NLS_DATE_FORMAT environment variable is highly recommended. In case
you hadn’t noticed, when running RMAN commands, the default date format
is limited to displaying only the day, month, and year:

Notice that there is no time option in the output. For many, this might not
be an issue, but having additional date/time output in the log files and on the

screen when running RMAN commands is extremely useful:

To enable better display of date and time when using RMAN, simply set
the NLS_DATE_FORMAT environment variable prior to starting your RMAN
session:

List and Adjust Default Configuration
The default RMAN configuration can be reviewed in two ways: you can use
the RMAN show all command, or you can review the details in
V$RMAN_CONFIGURATION.

NOTE
V$RMAN_CONFIGURATION will show only the nondefault values. If you
have not changed the default configuration, no rows will be
returned.

For example, to adjust the default configuration to allow the autobackup
of the control file (a recommended setting) to a specified location, including
the enabling of compressed backup sets for the disk type backups, you can
execute the following at the RMAN prompt:

Once this has been executed, you can review the settings with the
following:

In this state, you can run the backup database command and RMAN
will take your default settings into account.

RMAN Backup Redundancy
Backups are important, and to help you protect this resource, RMAN enables
you to duplicate your backups—up to four of them in fact. You can take this
additional measure to ensure that your backups are protected from media
failure or human error. The COPIES clause can be used with the backup
command to specify how many backup copies should be created, or, if you
prefer, you can update the default configuration and specify the COPIES
clause as part of your default configuration. The command that follows
demonstrates how this can be done with the RMAN backup command:

In this example, while connected to CDB$ROOT, the pluggable database
(PDB) XPDB1 is backed up to /backups, and the backup is then duplicated to
/backups2 as well. To enable the duplicate option in the default configuration,
using two copies for both the datafile and archive log backups, for example,
you can use the following commands while connected to the CDB$ROOT:

The SYSBACKUP Privilege
In Oracle Database 12c, separation of administration duties has been
extended from the few basic options in earlier versions. One of the new
system privileges introduced is SYSBACKUP, which can be granted to users
who need to perform backup and recovery operations. A user with the
SYSBACKUP privilege will be restricted to allow only backup and recovery
operations. This permission can also be granted to a local user account in a
PDB, equipping the user with backup and recovery permissions on a specific
PDB. Let’s review the different connection options available with this role.

Connecting as the SYS user with SYSDBA permission:

Connecting as a common user with SYSBACKUP permission:

Using RMAN to connect to the CDB root:

Using a local PDB account with SYSBACKUP permission:

For more detail on the new administrative privileges and user security
when using Oracle Database 12c Multitenant, see Chapter 6.

CDB and PDB Backups
There are two key aspects to backups in an Oracle Database 12c Multitenant
environment: backups at the CDB level, and then those at the PDB level. You
can connect to a PDB and perform backup and recovery operations, albeit
with a few restrictions, which we will get to later in this chapter. You can use
RMAN to perform backups on a CDB or PDB, and later we will cover two
additional options: Oracle Cloud Control and Oracle SQL Developer. But
first let’s focus on using RMAN via the command line interface.

Before jumping in, note an important change introduced in Oracle
Database 12c. When connected to CDB$ROOT, if we specify only the key
word DATABASE in our backup, restore, or recover command, it applies to the
whole database (CDB root and all its PDBs). Here’s an example:

However, if you are connected to a PDB, the commands apply
specifically to the PDB you are connected to. In Oracle Database 12c, Oracle
introduced a new RMAN clause, PLUGGABLE DATABASE, which enables you to
perform tasks on specific PDBs, as follows, while connected to the
CDB$ROOT:

In the next sections, we will outline additional syntax changes that have
been introduced.

CDB Backups
In most cases you will find that backups will be scheduled and performed at

the CDB level, so that CDB$ROOT and PDB$SEED, as well as all the other
PDBs associated with a CDB, will be backed up. But this does not mean you
cannot be more specific, and in this section we will show you, by way of
example, how easy it is to perform backups while connected to the CDB root
as target.

Full CDB Backups
When you perform a full (whole) CDB backup, the following files should be
included:

 The control file
 All datafiles (CDB$ROOT, PDB$SEED, and all PDBs)
 All archived logs

Backing up the SPFILE is recommended, but in most cases it can easily
be rebuilt, so this is not mandatory. If you do have autobackup of the control
file enabled (which is highly recommended), the SPFILE will automatically
be backed up together with the control file when any structural changes are
made in the database.

Multiple options are available to you when backing up the whole CDB
database. Backup sets are common and the default, but using image copies
can be useful, and if kept locally—in the fast recovery area (FRA), for
example—they can be switched rapidly for fast recovery. This is especially
the case if the image copies are kept up-to-date with incremental backups
applied regularly. Backing up the entire CDB is perhaps the most common
method and is demonstrated in the following examples, which assume that
the RMAN environment is configured with the settings outlined earlier, and
the autobackup of the control file is enabled.

This first example uses the most basic form for backing up the whole
CDB. The command is executed while connected to CDB$ROOT:

In the next example, while connected to CDB$ROOT, we take this a little

further and explicitly specify the use of compressed backup set output, along
with the location for this output, specified in the FORMAT option. In addition,
we include a TAG, which can be extremely useful to identify particular
backups:

Next, we make use of image copies. Here we assume that sufficient
redundant storage is available, and a disk group called +DBBACKUP exists,
which will be used to store the image copies. Archived logs not yet backed up
will be written to the /backups folder on the file system. The database can
then be backed up as follows (while connected to the root container):

The end result is that a backup copy of the CDB database, including all
PDBs, can be located in the +DBBACKUP disk group. If something were to
happen to any of the primary files in this example on the +DATA disk group,
we could switch to an image copy quickly, followed by recovery of the image
copy, which in some cases can be much faster than restoring from a backup
set. This method of backup can be extremely useful, but note that sufficient
storage is required to keep the copy of the database. It is also possible to
adjust the FORMAT specification and write the image copies to a file system

location.

TIP
To identify your RMAN backup sessions easily in V$SESSION, you
can use the RMAN command to set the command ID for the session:
RMAN> set command id to "FULLCDBBKP";. In the end, you will be
able to use the CLIENT_INFO and look for the value id=FULLCDBBKP.

At this stage, you can use the LIST command to view the backup details,
including listing the image copies that have been created; by using the
PLUGGABLE DATABASE flag, you can specify a specific PDB to provide listings
for. So to detail the image copies for PDB1, created in the third example in
the preceding examples, use the LIST COPY command as follows:

These examples demonstrate how easy it can be to back up an entire
CDB.

Partial CDB Backups
In some cases, you might not want to back up the full CDB, but only a subset.
This is where the PLUGGABLE DATABASE keywords are invoked to get the task
done. The examples in this section are executed while connected to the root
container. In this first example, we will back up only CDB$ROOT,
PDB$SEED, and PDB1:

As illustrated, you can selectively specify the PDBs to include in the
backup. Note that when performing a partial CDB backup, CDB$ROOT
should be included.

In the second example, only the CDB root is backed up. Both possible
command options for this are listed:

or

It is also possible to take a more fine-grained approach and back up only
a specific tablespace. In this example the command will back up the USERS
tablespace located in PDB1; it is executed while RMAN is connected to CDB
root:

Note that the USERS tablespace needs to be prefixed with its PDB name
of origin; if the name is omitted, RMAN will attempt to back up this
tablespace from CDB$ROOT since we are connected to CDB$ROOT.

The final example demonstrates how we can back up the USERS
tablespaces in CDB$ROOT, as well as in PDB1:

CDB Reporting Using RMAN
When connected to the CDB as target, the report schema command will list
details for the CDB$ROOT, PDB$SEED, and all the PDBs associated with
this CDB. The next example shows the RMAN report schema command
output on a CDB using Automatic Storage Management (ASM) and Oracle
Managed Files (OMF), with one PDB called PDB1. A closer look at the
Tablespace column also reveals that the CDB$ROOT tablespaces do not have
a prefix, whereas all other PDBs, including those in PDB$SEED’s
tablespaces, have this defined.

To display additional details of backups and image copies that have been
created, you can run the LIST command. It is easy to use and can help you
quickly identify backup sets and image copies. The commands detailed next
are a small subset of those that you may find helpful:

PDB Backups
Now that you have seen how you can back up an entire CDB, let’s focus on
PDBs, which can be backed up while connected to the CDB root as the target
in RMAN, or you can connect directly to a PDB to perform a full or partial
backup. In this section we will review both of these methods.

Full PDB Backups
You can perform full backups of a PDB in a number of ways. You can back
up the PDB while connected to the CDB$ROOT as target, as shown in the
following example. First, the entire PDB, PDB1, is backed up with a single
command:

If you are looking at using image copies, you can also specify this as
follows:

This command can be extended to include more than just one PDB in the
backup. Simply specify the PDBs in a comma-delimited list, provided that
you are connected to the CDB root as the target. Here’s an example:

The next option is to connect directly to a specific PDB as the target, and
perform a full backup of the connected PDB. Here’s an example:

Or, here’s an example using a local account with SYSBACKUP
permission:

Once you are connected to the specified PDB, you can execute the
backup database commands without the PLUGGABLE keyword, because all
backup commands in this context will apply only to the specified PDB. If you
try to use the PLUGGABLE DATABASE syntax instead of only DATABASE, the
following error will be generated:

Several key options are available when creating a backup of a specific
PDB while connected directly to it, as shown with PDB1 here:

When connected to a PDB as a target, you can use the LIST or REPORT
command to display information specific to this PDB. In terms of the
archived logs, you can show them with the LIST command, but other
operations, such as backup, restore, or delete, are not permitted while
connected to the PDB as a target.

Partial PDB Backups
While connected to a specific PDB as a target, you are allowed to perform
only operations that are specific to that PDB—so you cannot, for example,
perform backups of other PDBs in this context.

Once connected to a PDB, you can perform backups of datafiles or
tablespaces as per normal:

If you then connect to the CDB root and list the backups with
TAG=PDB1_USERSTS, you will see the following output, noting the highlighted
line showing the container ID and PDB name.

It is possible to perform partial PDB backups from the CDB root. This
enables you to back up specific PDBs or specific tablespaces from them.
Following are two such examples, run while connected to the CDB root as
target. In the first, we back up the USERS tablespace in the CDB$ROOT, as
well as the USERS tablespace from PDB1 and PDB2:

NOTE
The datafile number within a CDB is unique.

The second example illustrates backing up specific datafiles from various
PDBs. Note that you do not have to specify the PDB names, but you must
know its datafile number within the CDB.

PDB Reporting
As noted earlier, when connected to a PDB as the target, you can view only
details relating to that particular PDB—for example, using the report
schema command.

Restrictions
When you are connected to a PDB as your target, some restrictions are placed
on backups, including the following:

 You are not permitted to back up, restore, or delete archived logs
while connected to a PDB as target. Tasks related to archive logs must
be managed from the CDB$ROOT. Note that during the recovery
process (if connected to a PDB as target), if required, RMAN will

restore any archived logs needed.
 You cannot update the default RMAN configuration using the
CONFIGURE command, because this is managed from the CDB level.

Do Not Forget Archive Logs!
As a rule, when performing backups, you should always be sure to include
the archive logs in the backup schedule. In Oracle Database 12c, you back up
the archive logs from CDB$ROOT. Following are a number of basic
variations that can be used for this.

Here’s how to back up all available archive logs:

Adding an additional step, you can purge the archive logs once they are
backed up:

Here’s how to back up all archived logs not backed up at least twice:

It is also possible to update the archive log deletion policy for the default
RMAN configuration. For more detail on managing archive logs with
RMAN, see the Oracle Database 12c online documentation.

Recovery Scenarios
Several levels of recovery are possible in a CDB environment. For example,
media recovery can be performed for the entire CDB, or for just one or

multiple PDBs. As with non-CDB configurations, you can perform media
recovery on database files, tablespaces, and even at the block level.

Instance Recovery
Instance recovery is specific to a CDB as a whole. There is only one instance
for the entire CDB, rather than instances allocated on a per-PDB basis. This
means that there is a single redo stream, and during crash recovery the redo
information is used to recover the instance when the CDB root is opened.
This process requires that the datafiles be consistent with the control file, so
the redo information is used to roll back any uncommitted transactions at the
time of the instance failure. And once the CDB root is opened, all PDBs will
be in a mount state.

When reviewing the alert log during system startup, you will notice
messages similar to the following, indicating instance crash recovery:

The next section will focus on restore and recovery of an entire (whole)
CDB, and will also explore the full restore of a PDB. Point-in-time recovery
(PITR), including the use of Flashback Database, will be covered in more
detail in Chapter 8.

Restore and Recover a CDB
The restore and recovery of the CDB database includes all contained PDBs,
assuming that you followed the steps outlined in the previous section to
perform the backups. If backups are performed correctly, executing restore
and recovery procedures becomes a much easier task.

Restore a CDB Using a Cold Backup
As mentioned, you can back up a full CDB using a cold backup, in which it is

possible for the database to run in NOARCHIVELOG mode.
The following steps can be used to perform a full restore. In this example,

the autobackup of the control file is used (in this case the file was called cfc-
CDB3-c-603345334-20160309-01’) to restore the SPFILE and control file.
However, if you already have the SPFILE, you can skip the step of restoring
the SPFILE and continue with the next:

Perform a Complete Recovery of a CDB
Performing a full restore and complete recovery of a CDB is almost as easy
as performing a full backup. Again, the assumption is that you have followed
the steps from earlier in this chapter to perform the full backup of the CDB,
and that these backups are available. In this scenario, note that all required
archive logs are available to perform the recovery. The archive logs may still
be available on disk, or perhaps they are part of the backup as well.

The RMAN connection is initiated to the CDB$ROOT as target:

Perform a Complete Recovery of CDB$ROOT

The process required to restore the CDB$ROOT container alone, when all
other PDBs are intact without any issues, is similar to the previous steps:

Recover from a Lost CDB$ROOT Tablespace
The steps required to perform a full restore and recovery of a CDB$ROOT
tablespace should be executed while connected to the CDB$ROOT as target.
It is not necessary to have the CDB in a mounted state, or even to have the
PDBs closed, as long as the tablespace in question is not the CDB$ROOT
SYSTEM or UNDO tablespace. The tablespace must be offline when the
restore is performed.

The steps to follow to restore and recover the USERS tablespace in this
context are shown here:

If a restore or recovery is required for the SYSTEM or UNDO
tablespace, the CDB root must be in a mounted state before the restore and
recover commands are executed.

Recover from a Lost CDB$ROOT Datafile
Recovery from a lost datafile in the root container can be accomplished
without restarting the CDB in a mounted state, as long as the datafiles do not
belong to a SYSTEM or UNDO tablespace (which otherwise would
necessitate a restart into a mounted state, prior to executing restore or

recovery). The following commands demonstrate restore and recovery of a
lost datafile from the USERS tablespace (datafile 6 in this case) located in the
CDB$ROOT. The connection here is with the CDB root as the target:

Recover from Loss of Tempfiles
If you have lost a tempfile due to media failure, you have two possible
options to resolve this. The first is simply to add a new tempfile to the
temporary tablespace and drop the old file. The second option will take effect
on the next restart of the CDB. The tempfile will be re-created on the next
restart of the CDB root, and if it belongs to a PDB, on the next open of the
PDB the tempfile will be created. Following is an extract from the alert log
showing this:

Restore and Recover a PDB
In this section we will cover the recovery steps with specific focus at the
PDB level, and the key scenarios will be addressed.

Restore and Recover a PDB
If a PDB is lost, you can restore and recover it without having the root
container in a mounted state, although the restore and recovery process is
managed via the root container as the target connection. If the PDB is still
open, you must close it before executing the restore and recovery commands:

What if your backups included image copies of the PDB? Using image
copies may be very effective in reducing any downtime, rather than waiting
for a restore of the full PDB from backup. When performing restore and
recovery operations, time is of the essence, and the faster a database can be
restored and brought back online for users the better. So if image copies are
available for a PDB, why not use them? You can switch to use the image
copies, create a new backup of the PDB as an image copy in the original
location, and then schedule a switch back during a quiet period.

Here are the steps to follow:

Recover a Lost PDB System Datafile
If a datafile from a PDB’s SYSTEM or UNDO tablespace (when using local
undo) is lost, the recovery process must be performed from the root
container. The root container, including all other PDBs, can be open read-
write, but the affected PDB must be in a mounted state.

The steps to perform a restore of datafile 8, which is the SYSTEM

datafile for PDB1 in this particular example, can be restored from the
CDB$ROOT as follows:

Recover a Lost PDB Nonsystem Datafile
If the lost datafile in a PDB is not part of the SYSTEM or UNDO (if using
local undo) tablespace, the restore and recovery process can occur from either
the CDB$ROOT or the PDB. The PDB does not have to be in a mounted
state, but the datafile must be taken offline, if it’s not already down, prior to
performing the restore and recovery.

In the following example, the restore and recovery is performed while
connected to the PDB. The report schema command is used to confirm the
datafile number, which, in this case, is datafile 10 (one of the USERS
tablespace datafiles):

As with our earlier example, if image copies are available, the option also
exists to switch to using this. Note that if you do so, the location of the image
copy will most likely differ from the current file location. You can replace the
restore datafile 10 command with the following if a copy is available
(use the list copy command to identify datafile copies):

Recover a Lost PDB Tablespace
If a tablespace needs to be restored and recovered in a PDB, two options are
available. This can be done within the PDB (as long as this is not a SYSTEM
or UNDO tablespace), or it can be done from the CDB$ROOT. The
tablespace must be taken offline prior to starting the restore, and this should
be done from within the PDB:

Then you can restore the tablespace from within the PDB with the
following commands:

Alternatively, you can perform the restore and recover commands from
the CDB$ROOT:

We’ve covered a number of the key areas you should be familiar with
when performing complete recovery operations in an Oracle Database 12c
Multitenant environment. In the next chapter we will look at using PITR and
the Flashback Database options.

RMAN Optimization Considerations

Working with large databases is a prevalent trend today, and it is less
common to find the need to purge old data. Data is retained for longer
periods, and often it will never be removed. This increase in overall database
sizes affects backup and recovery, and optimizing backup and recovery
operations is becoming more and more important. Furthermore, backup
windows are shrinking, while additional load on production systems needs to
be kept to a minimum. To assist with this issue, Oracle introduced a number
of options, including the following:

 Incremental backups
 Block change tracking
 Multiple channel backups (parallel backup and recovery)
 Multisection backups
 RMAN backup optimization

In this section we will review the first four of these five options, which
are highly recommended when using multitenant.

Incremental Backups
Two key options are available for incremental backups: differential and
cumulative backups. By default, the differential option is selected, and when
using this method all database blocks changed since the previous backup will
be included. Table 7-1 illustrates a schedule that employs differential
backups; first an incremental level 0—a full backup—is performed on
Monday, followed by a differential backup each day thereafter.

TABLE 7-1. Differential Incremental Backup

If you need to perform a restore on Thursday, the full backup from
Monday, as well as the incremental backups from Tuesday and Wednesday,
will be required. One of the potential risks when relying on incremental
differential backups is that if you were to lose one of the incremental
backups, you might not be able to restore and recover to the required point in
time. This risk can be reduced by ensuring that archive logs are backed up at
least twice, so that if one day’s worth of backups is lost, it may still be
possible to use archive logs to recover past this point. For example, to back
up PDB1 using differential incremental backups, we’d follow these steps.

1. Create the base incremental level 0 backup:
RMAN> backup incremental level 0 pluggable database PDB1;

2. Create the differential incremental level 1 backup:
RMAN> backup incremental level 1 pluggable database PDB1;

With the cumulative incremental backup, as with the differential
incremental backup, only changed blocks are backed up; in this instance,
however, the backup includes the data since the last base incremental level 0
backup. Table 7-2 illustrates this.

TABLE 7-2. Cumulative Incremental Backup

First an incremental level 0 backup is created, and every cumulative
incremental backup following this will back up all the changed blocks since
the last full level 0 backup. This method does extra work in backing up
blocks more than once and requires additional storage, but the overall risk is
less. When using this approach, the keyword CUMULATIVE must be used—so,
for example, if we want to back up PDB1 using this method, the following
commands can be run.

1. Create the base incremental level 0 backup:

2. Create the differential incremental level 1 backup:

Incremental backups can be extremely useful, especially in large database
environments. But this brings us to our next point, which is that during an
incremental backup, the datafile blocks are scanned to identify changed
blocks in need of backup. This process can take time, perhaps even as long as
a full backup itself. To make this faster, Oracle introduced block change
tracking.

Block Change Tracking
When you’re working with incremental backups, the use of block change
tracking is highly recommended. Note, however, that this is an Enterprise
Edition feature and cannot be used in Standard Edition. This feature cannot

be enabled within a PDB, but instead should be enabled while connected to
the CDB$ROOT. If you do attempt to enable block change tracking while
connected to a PDB, an ORA-65040 error will be generated, as shown in the
following example:

Enabling or disabling this option is easy, especially when using OMF.
The block change-tracking file is created and will grow in 10MB chunks as
needed; the default location when using OMF is DB_CREATE_FILE_DEST.
If you are not using OMF, the filename and location should be specified
manually. The file will track all the changed blocks in the database and can
be enabled with the following command:

Block change tracking can be disabled with the following command:

Using this option together with incremental backups is recommended for
multitenant environments, especially for larger configurations, because it will
assist in creating faster backups and reducing resource consumption.

Multiple Channel Backup
Using multiple channels may also lead to faster backup and recovery times.
However, having sufficient CPU and I/O capability to accommodate this is
equally important; otherwise, you may slow down operations when using
multiple channels. If you want to use this option by default, you can update
the default configuration and specify the parallelism parameter as shown

here:

You may also allocate multiple channels as part of your backup and
recovery commands:

Multisection Backups
Combining incremental backups with multiple channels can help speed
backup and recovery operations. Prior to 12c, with large files, this did not
always provide significant benefit, but since 12c, parallel incremental
backups can be taken one step further. As of Oracle Database 12c Release 1
(12.1), RMAN now also supports multisection incremental backups, as well
as the use of multisection with image copy backups. The COMPATIBLE
parameter must be set to 12.0.0 or higher to allow for this. Note that using
this option forces the FILESPERSET option to be set to 1 for backup sets. The
following syntax can be used to back up a PDB database called XPDB2 with
large datafiles using multisection backups, and the command is executed
from the CDB$ROOT:

As mentioned, the use of multisection can now also be used with image
copy backups. In the following example, an image copy backup is taken of
the XPDB PDB with the SECTION SIZE clause specified as follows:

NOTE
If the section size specified is larger than the file to be backed up,
multisection backups will be ignored for the file and not be used.

The Data Recovery Advisor
Backup and recovery can become incredibly complex, especially when
diagnosing and deciding on the correct repair options. To assist with this,
Oracle introduced the Data Recovery Advisor in 11g, and it has been
extended and improved in Oracle Database 12c. The Data Recovery Advisor
can help list potential corrective actions, and, if you want, even perform these
tasks for you. You can use either RMAN or Oracle Enterprise Manager
Cloud Control to obtain information provided by the Data Recovery Advisor
and execute the required tasks.

At the time of writing, the Data Recovery Advisor could be used in a
non-CDB as well as in a single-instance (non-Oracle RAC) CDB. The Data
Recovery Advisor is not supported in Oracle RAC configurations. It may be
run only from the CDB$ROOT, not from within a PDB, and if this is
attempted an RMAN-07536 error will be displayed.

The standard Data Recovery Advisor commands to be invoked from
within the CDB$ROOT include these:

Block Corruption
Block corruption is a nightmare for DBAs, and only the most fortunate avoid
coming across it in their careers. Fortunately, Oracle provides tools that can
be used to ensure your databases are valid and that block corruption is not
hiding under the covers. Running these health checks on a regular basis is,
therefore, highly recommended.

The VALIDATE command is very easy to use to perform these checks.
When the command is run from RMAN, a detected problem will trigger a
failure assessment. This will then be recorded in the Automatic Diagnostic
Repository (ADR), where it can be accessed by the previously discussed Data
Recovery Advisor.

The VALIDATE command can be executed against a running database
(CDB, non-CDB, and PDBs) and also on backups, including RMAN backup
sets and image copies.

The following is a short listing of some of the options available with the
VALIDATE command; for more detail see the Oracle 12c Database
documentation.

Using Cloud Control for Backups
Backup and recovery operations can also be performed from within Oracle
Enterprise Manager Cloud Control. Figure 7-1 and Figure 7-2 illustrate some
of the options available.

Figure 7-1. Backup and recovery options in Cloud Control 13c

Figure 7-2. Backup options in Cloud Control 13c

For example, if Availability | Backup & Recovery (Figure 7-1) is
selected, you will see a number of options to help guide you through creating

and scheduling backups, along with performing restores and recoveries.
Selecting the Schedule Backup option presents the options shown in Figure
7-2, including the ability to back up a specific PDB.

Back Up to the Cloud
With the growing interest in using cloud-based solutions, a number of options
are available for backing up Oracle Databases to the cloud. Two key players
present such offerings: Amazon Web Services (AWS) and the Oracle Cloud
Services.

NOTE
If you sign up for Oracle Cloud Services to perform RMAN backups
to the Oracle Cloud, you can use the required RMAN encryption
free of charge. This is even the case when using Oracle Standard
Edition, although a specific patch will need to be applied to a
Standard Edition environment to allow this.

To configure the Oracle Database Backup Service, you first need to
create an Oracle Cloud account, and then sign up for both the Backup Service
and the Oracle Storage Cloud Service. Here is a summary, at a high level, of
the steps required to back up to the Oracle Cloud:

1. Create an Oracle Cloud account and sign up for the backup and
storage services.

2. Download the Oracle Database Backup Cloud Module.
3. Install the module. See readme.txt file for parameter details (run as

oracle software owner):

Once the module is configured, three files are created: the wallet with

your cloud account details loaded, a parameter file, and the module
library.

4. When allocating the SBT_TAPE channel, options need to be supplied
to indicate the use of the library and your configuration:

5. You must use encryption when using the Oracle Database Backup
Service with the cloud module configured here. The backup
encryption can be enabled using three possible options: password
encryption, Transparent Data Encryption (TDE), or a combination of
both. The quick and easy method is to use the password option,
which is enabled by running the following command:

6. Run your RMAN backup commands:

For more detail on using the Oracle Cloud, and how to work with
advanced configurations in the Cloud backup module, see the Oracle
Database Backup Service documentation.

Summary
Oracle Database backup and recovery can be one of those areas that busy
DBAs may not spend a lot of time on yet, but, as we have shown, it is one of
the most critical areas in managing a multitenant environment. The
emergence of this new multitenant paradigm (CDBs and PDBs) has
generated a number of explanatory analogies, and one that seems apt is
having all your eggs in one basket. It is clear that you need to look after this

basket, because if something goes wrong, you could end up with a difficult
cleanup situation.

The same can be said of using Oracle Database 12c Multitenant: you are
creating a container that houses multiple PDBs, and if you do not have
adequate backups (both at the container and pluggable database levels), you
may end up with a very difficult scenario should disaster strike.

This chapter demonstrated that performing backup and recovery in a
multitenant environment is not particularly complex or onerous, and getting a
handle on the basics means you can perform complete recovery with just a
few easy commands. The next chapter will take this one step further to
discuss point-in-time recovery and Flashback Database.

I

CHAPTER
8

Flashback and Point-in-time Recovery

n previous chapters you have learned that most of the backup and
recovery tasks are performed at the container database (CDB) level, and
this is perfect in terms of protecting all your pluggable databases (PDBs)

from media failure. Simply create a new PDB in the CDB, and the PDB will
be automatically protected in the same way.

However, a PDB administrator may have different requirements. Rarely
in production, but frequently in test environments, we may need to do point-
in-time recovery (PITR), so we appreciate a smart alternative: Flashback
Database. Release 12.1 brought us multitenant, and although Flashback
Database was not available in this release, in 12.2 this has changed thanks to
the introduction of the local UNDO mode.

Pluggable Database Point-in-Time
Recall that we said that the ancestor of PDBs was the transportable
tablespace. Here (whether you are using PDBs or not), we’ll take a look at
how you restore a tablespace to a previous state.

A tablespace has its own datafiles, so the first step is easy: Restore the
datafiles from the previous backup. Then you have to apply REDO to bring
the files forward, up to the desired point-in-time you are working to; but
that’s not enough. Datafiles by themselves are just a bunch of bits without the
metadata that details what is stored within. This information is contained in
the dictionary, so this is why you cannot do a tablespace point-in-time
recovery (TSPITR) in place. Instead, you must also recover the SYSTEM and

SYSAUX tablespaces to the same point-in-time, which has to be done into an
auxiliary database.

With PDBs, you don’t expect to encounter the same problem, because
they have their own SYSTEM and SYSAUX tablespaces that can be
recovered to the same point-in-time. This means that you can bring your PDB
to a specific point-in-time. But that’s not enough, because you still can’t open
it in this state. As a refresher, look back at the section “Accessing Database
Files at the CDB Level” in Chapter 1 and you will see what is missing.

When you recover a database, the final step is to roll back all the ongoing
transactions that did not complete at that point-in-time. This is the “A” from
the ACID property: atomicity of transactions. The principle holds that you
need to apply the UNDO for the transactions that were there at that time,
which is why you require a PITR of the UNDO tablespace as well.

In Figure 8-1, you can see the restore, roll-forward, and rollback phases
of recovery illustrated. All files are brought up to the required point-in-time
state by applying REDO to them. Uncommitted transactions are cleaned out
by applying UNDO to roll them back.

FIGURE 8-1. The roll-forward and rollback phases of recovery over the
transaction timeline

Let’s see how it works in 12.1 Multitenant. With PDBs, you don’t need to
restore everything into an auxiliary instance as you do for tablespace PITR. It
is now possible to restore the complete PDB tablespaces in place because
they contain their system tablespaces. However, you still need to restore
UNDO, and for this you need an auxiliary instance. You cannot overwrite the
common UNDO which is also used by the current transactions running on the
other containers.

Recover PDB Until Time
Here is an example of the Recovery Manager (RMAN) commands you can
run to restore and recover a PDB, specifying the point-in-time with a system
change number, as of SCN 1610254, and using /var/tmp for the auxiliary
instance:

In the RMAN output you can see the operations that it is performing.
RMAN is verbose here, so we only show those sections of output that help
you understand how it works.

First, all the PDB datafiles, those of SYSTEM, SYSAUX, and USERS
tablespaces, are restored in place:

Then recovery must start, and RMAN needs to determine the tablespaces
that may contain UNDO:

Notice the warning, which we will explain later. Here RMAN is making a
reasonable guess that those tablespaces that contain UNDO currently are the
same as those that contained UNDO at the point-in-time you want to recover
to, and RMAN lists them out.

Those tablespaces that contain UNDO cannot be restored in place,
because they would override the CDB tablespaces that are used by the other
containers, so for this purpose we need an auxiliary instance:

As you can see, RMAN takes responsibility for creating an instance,
using Oracle Managed Files (OMF) file naming with destination set to
/var/tmp, which we defined earlier as an auxiliary destination. So let’s review
the parameters that are used. It is possible to define additional options, but the
following are mandatory:

 db_name and compatible must be the same.
 SID and db_unique_name must be unique.
 _clone_one_pdb_recovery specifies that only CDB$ROOT and one

PDB will be recovered.
 _system_trig_enabled disables the system triggers to be sure that the

auxiliary instance does not have any unintended impact outside of
itself.

Then this instance must use the files from the PDB that have been
restored in place:

And the CDB datafiles for SYSTEM, SYSAUX, and UNDO will be
restored to the OMF destination:

At this point, we have an auxiliary instance with access to all the
necessary CDB$ROOT and PDB files, which have been restored to the
specific point-in-time of interest. Next, it’s time to recover them:

The rollback phase of the recovery, which rolls back the transactions that
were opened at the system change number (SCN) 1610254, reads the
temporarily restored UNDO, but it actually updates the datafiles that were
restored in place. At the end, the auxiliary instance and temporarily restored
datafiles are automatically removed.

Where Is the UNDO?
In the previous example, the following warning was generated:

RMAN needs to restore all tablespaces that may contain UNDO segments
or the recovery will fail, so it lists the current tablespaces which contain
UNDO. But we need the UNDO from the point-in-time we want to recover.
And this may differ if we have changed the UNDO tablespace in the
meantime.

In the following example, we alter the UNDO tablespace to UNDO2,
dropping UNDO1, which existed as the prior default. The “recover PDB to a
point-in-time” process then presents the following warning:

And finally it fails, because that tablespace did not exist at the point-in-
time we want to recover to:

Datafile 17 was from the UNDO2 tablespace, but we can’t restore it, and
we don’t need it in any case; but we do need the datafile from UNDO1.

Here the syntax of the RECOVER command is useful because it allows us to
specify the specific tablespaces to restore when we know which one holds
UNDO:

We have seen cases in which RMAN does not know how to restore these
datafiles, but it’s probably not a good idea to rely solely on the fact that you
know the name of the tablespace that was present at a previous point-in-time
either.

But no need to worry, because the solution is to have the PDBPITR
operation automatically restore the correct UNDO tablespace using an
RMAN catalog. Then there will be no warnings or errors, and RMAN will
restore the correct UNDO tablespace itself.

Summary of 12.1 PDBPITR
From what we have discussed so far, two recommendations follow: First, to
be fully automated, even in those instances when the UNDO tablespace has
changed, you need an RMAN catalog. If you anticipate running PITR, you
should have an RMAN catalog to facilitate a large retention period. In fact,
there are no irrefutable reasons not to use an RMAN catalog! Remember that
you can put this anywhere, even on a virtual machine, because you don’t

have to license it separately. Second, even if the auxiliary instance is
supposed to be removed automatically by RMAN, if a failure occurs, you
may have to clean it up manually. You can find its ORACLE_SID in the
RMAN log and use this to connect and shutdown abort if needed.

Figure 8-2 shows the CDB that is at the current SCN, where PDB2 has
been restored to a point-in-time SCN, and an auxiliary instance is able to
undo the uncommitted transactions because it has restored the CDB level
UNDO at that SCN.

FIGURE 8-2. Point-in-time recovery using auxiliary instance

The creation and cleaning of the auxiliary instance is automated by
RMAN, but this still takes time. You need to restore and recover all
tablespaces that may contain UNDO, even though you may need only a few
UNDO records—specifically those that cover the open transactions for your

PDB. Perhaps there is a better way, so let’s imagine that UNDO was stored at
the PDB level.

Local UNDO in 12.2
In 12.1 the UNDO tablespace is common, meaning that it is shared among
the entire CDB, to store information about all transactions. Furthermore, only
the CDB administrator can create the UNDO tablespace. So in working with
a PDB, the statement to create the UNDO tablespace is simply ignored.

The problem with shared UNDO is that it stores data from all other
containers. As mentioned, UNDO contains information relating to
transactions, which is necessary to clean up any uncommitted transactions as
required. This means that PDBs on a shared UNDO CDB are essentially not
self-contained, except for a closed PDB that has been shut down cleanly.

This is why it was impossible to flashback a PDB in 12.1. And in older
versions, the only way to affect a PITR of part of the database was to use
TSPITR, which could not be done in place. It was, in fact, necessary to
restore the SYSTEM, SYSAUX, and UNDO tablespaces, in addition to the
tablespace that you specifically wanted to restore, because the metadata from
the system tablespace is required, along with UNDO record information, to
roll back the transactions.

When 12c was introduced, each PDB had its own system tablespaces but
UNDO was shared, which again meant that PDBs were not isolated enough
for particular types of operations, such as those that shift tablespaces to
another time or location.

However, beginning with 12.2, you can define the UNDO mode to local,
which means that each PDB stores its own UNDO records in a local UNDO
tablespace pertaining solely to that PDB. This enables many operations on an
open PDB that were previously impossible, such as relocating, plugging, and
flashback of a PDB. Furthermore, it improves the PITR of PDBs because the
need for an auxiliary instance has been removed.

In 12.2, you can still use the shared UNDO mode if you prefer, as in 12.1,
but certain operations will not be available or will require the PDB to be
cleanly closed so that there are no active transactions, and no need for any
UNDO records.

In short, having the UNDO local to the tablespace improves the

efficiency of unplugging and PITR of PDBs, and it is mandatory for online
relocate or clone. (Note: in shared mode these operations require the source
to be open read-only to ensure that there are no ongoing, open transactions.)
Local UNDO is also mandatory for the referenced PDB when creating a
proxy database.

Database Properties
If you have a CDB already created, you can check the UNDO mode from the
database properties:

The LOCAL_UNDO_ENABLED property is set to TRUE when you are in local
UNDO mode, and it is set to FALSE in shared UNDO mode. Be careful if
you don’t see anything, because this means that the database was created with
shared UNDO, either when UNDO mode was not specified in the CREATE
DATABASE statement or if it was upgraded from 12.1

Create Database
You choose the local UNDO mode when you create the database. You can
check the option on the Database Configuration Assistant (DBCA), or add
LOCAL UNDO ON to the ENABLE PLUGGABLE DATABASE clause of the CREATE
DATABASE statement.

When you create the database in local UNDO mode, in addition to the
UNDO tablespace of the CDB$ROOT container, you have an UNDO
tablespace in PDB$SEED and in any PDB that you create. Here is an
example, noting again that in the report schema the tablespace names are
prefixed with the PDB name:

Changing UNDO Tablespace
The default UNDO tablespace that is created with a PDB may not suit your
needs. It is generated based on PDB$SEED, or from the CDB$ROOT if
PDB$SEED has no UNDO tablespace. If you want to change the UNDO
tablespace, you can drop it and re-create as you want. Let’s look at an
example:

We have the UNDOTBS1 UNDO tablespace that has been created with
our PDB. As we are in local UNDO mode, we can’t drop it:

This tablespace is the one defined for our PDB:

So, first, we have to create a new UNDO tablespace, then switch to it,
and then drop the old one when there are no transactions in it. As an example,
we want to define an UNDO tablespace as a bigfile tablespace, with
guaranteed retention.

Once the UNDO tablespace is created, we can then switch to it:

And then we can drop the old one:

Of course, you may want to wait for the UNDO retention time to elapse
before dropping the old tablespace; otherwise, you may risk having some
queries fail with the infamous ORA-1555 error.

Changing UNDO Mode
If you have created the database in shared UNDO mode, you can change it
later, but this requires downtime on the CDB because you need to be in
upgrade mode to do so.

In the following example, we have no rows in our database properties
relating to UNDO mode, which means that LOCAL_UNDO_ENABLED is set to off.

If you try to change this property you get the following error:

However, once you have a maintenance window, you can work this
through with the following commands:

And we now see this change reflected in the UNDO mode property
setting:

At that point, the local UNDO tablespaces will be created when you open
the PDBs.

If you want to create the UNDO tablespace yourself, you have to open
the PDB, then create your UNDO tablespace, and then drop the UNDO
tablespace that was created at open.

If you want to come back to shared UNDO mode, the opposite operation
can be done: start upgrade, ALTER DATABASE LOCAL UNDO OFF, and then drop
the UNDO tablespaces in PDBs because they are no longer used.

PDB$SEED
If you changed to local UNDO and you want to have the same behavior as
though the database was created in local UNDO from the get-go, you have to
create an UNDO tablespace in the PDB$SEED. Then new PDBs created from
SEED will have it as a template.

For that, you need to open the SEED read/write:

NOTE
No error results when you open the PDB$SEED read/write because
customization of PDB$SEED is allowed when you are in local
UNDO for the goal of UNDO tablespace creation. If you try to open
the seed in read/write mode when you are in shared UNDO, you get
an error (ORA-65017: seed pluggable database may not be dropped
or altered). Only sessions with "_oracle_script"=true can open
the PDB$SEED when in shared UNDO mode.

When using OMF, the UNDO tablespace of PDB$SEED is automatically
created, based on the CDB$ROOT tablespace attributes.

Shared or Local UNDO?
We see no reason to use shared UNDO mode in 12.2, and our
recommendation is to set LOCAL UNDO ON. You want multitenant for PDB
isolation and easy operations, so you probably want local UNDO.

Note that even in local UNDO, some UNDO records can be generated in
the CDB$ROOT if they are done by internal transactions that switched

temporarily to CDB$ROOT.

PDB Point-in-Time Recovery in 12.2
We have explained the complex operations that have to be done when
recovering a PDB at a different time than the CDB. The reason was to get the
UNDO records necessary to clean the transactions that were not completed at
the point-in-time we restore to. Now let’s see what is different in 12.2.

PDBPITR in Shared UNDO Mode
If you are in shared UNDO mode, the LOCAL UNDO OFF state, you are in
exactly the same situation you were in with 12.1. The UNDO for all
transactions is stored in the CDB$ROOT tablespace and shared by all PDBs.
As a consequence, we cannot recover it to another point-in-time there; we
need an auxiliary instance for this, along with a place for it.

When a fast recovery area (FRA) is defined, you can run RECOVER
PLUGGABLE DATABASE without the AUXILIARY DESTINATION and the auxiliary
instance will be created in the FRA. While it runs, you can see those files
listed as AUXILIARY DATAFILE COPY in V$RECOVERY_AREA_USAGE:

If no FRA is defined and you try the same operation, you will get the
following error:

Without an FRA, you need to specify a location as per the following:

So you have a choice: put it in FRA or choose a destination.

PDBPITR in Local UNDO Mode
With the introduction of local UNDO mode in 12.2, you have all required
UNDO in the local UNDO tablespace that is restored in place, so there is no
need for an auxiliary instance, and the PDB PITR is simpler and faster.

You run the same command, RECOVER PLUGGABLE DATABASE, without
specifying an auxiliary location since the auxiliary instance is no longer
needed. The best practice is to put the restore and recover commands in a
RUN block with a SET UNTIL:

The point-in-time can be specified with a restore point as above, a
timestamp, an SCN, or a log sequence and thread number. This is no different
from the database PITR you know from versions prior to multitenant. A
restore point here is used only to associate a convenient name to an SCN and

can be created at CDB or PDB level, but we will discuss that later when we
describe other functionalities of restore points.

Flashback PDB
When you want to revert a database to a recent point-in-time, you can use a
smart alternative that does not require restoring any datafiles. Flashback PDB
was one of the most important features missing in 12.1, but it is now possible
in 12.2, enabled by the addition of local UNDO. Be aware that flashback
requires additional logging. Conventional recovery starts from a previous
state of the datafiles and uses the REDO stream to roll them forward. In
contrast, Flashback Database begins from the current state of the datafiles and
applies flashback logs to bring them back to a previous state.

Flashback Logging
By default, a database does not generate the flashback logs, which means that
you cannot run Flashback Database operations. There are two ways to
generate a flashback log: set FLASHBACK ON and guaranteed restore point.

FLASHBACK ON
You can set FLASHBACK ON even when the database is opened. It is performed
at the CDB level:

From this time on, the database will store flashback logs in the FRA:

Flashback logging has a very small overhead by itself, but there are some
side effects on sessions that format new blocks, such as direct-path inserts or
any UNDO generation. Usually there is no need to read those blocks before
writing them, because they are new. However, with FLASHBACK ON, these
sessions have to read the blocks in order to write the previous image to the
flashback logs. So with FLASHBACK ON, you may see more reads from disks
(physical reads for flashback new) in session statistics.

You don’t want to keep the flashback logs forever, because Flashback
Database is best used to go to a recent point-in-time only. Going weeks or
months prior is more efficient with PITR. So when you set the database in
FLASHBACK ON mode you also define a flashback log retention period:

This value is in minutes and the default is 1440, which translates to 24
hours. Note that this is a target only, so in the case of space pressure, the
database will give priority to generating the ARCHIVELOG rather than
guaranteeing the flashback retention.

Even if the flashback logs contain all the information to bring datafiles
back to a past image, it still requires REDO to bring them to a consistent

point-in-time, so enabling FLASHBACK ON can be done only on an
ARCHIVELOG mode database.

Guaranteed Restore Point
With FLASHBACK ON, you can flashback to any point-in-time in the past that
fits within the retention period. That point-in-time is defined by timestamp,
an SCN, or a restore point. Even when you are not in flashback mode, you
can enable the possibility to flashback to a restore point when you declare
that restore point with guarantee flashback database:

Besides the V$RESTORE_POINT view, the easiest way to list these restore
points is from RMAN:

A guaranteed restore point ensures that you can flashback to that specific
point. The flashback logs and archived logs required for that point are kept in
the FRA, but only a minimal set specifically for that point-in-time alone.

For example, here we’ve deleted all backups and will try to delete all
archived logs:

And you can see that the ARCHIVELOG sequence that covers a
guaranteed restore point is protected, because it is needed to make the
datafiles consistent in case of flashback to that point. We also keep the
flashback logs that contain the image of all blocks that have changed since
that restore point:

This means that you don’t want to keep old guaranteed restore points for
too long, because you can’t get rid of the flashback log generated since your
oldest restore point.

If you want to keep a snapshot of the database for a long time and go
back to it frequently, our recommendation is to drop and re-create the
snapshot once you have flashed back to it. It’s logically the same snapshot,
and earlier flashback logs can be reclaimed.

In multitenant, flashback logging is done at the CDB level, but starting
from 12.2 you can flashback individual PDBs as an alternative to PITR.

Flashback with Local UNDO
When your CDB runs with LOCAL UNDO ON, you can flashback a PDB alone
without any side effects on the other PDBs, in the same way that you can do a
PITR in place. Of course, this is possible if you have FLASHBACK ON and the
point-in-time is within the flashback log retention target, but it is also
possible with FLASHBACK OFF if you have a guaranteed restore point. This is
achievable because

 flashback logs have all previous images of blocks that have changed
 UNDO tablespace is flashed back to the same point-in-time and then

can be used to clean the transactions that were ongoing at that point-
in-time

Flashback in Shared UNDO
When your CDB runs with LOCAL UNDO OFF, the UNDO cannot be flashed
back in the UNDO tablespace because it’s shared at CDB level. You are in
exactly the same place as with PITR and the solution is the same: an auxiliary
instance. You can add the AUXILIARY DESTINATION to the FLASHBACK
PLUGGABLE DATABASE clause, or it will be created, implicitly, in the FRA.

Restore Points at the CDB and PDB
Levels
You can create restore points at the CDB level, and then use them to
flashback PDBs. In addition, it is also possible to create a restore point at the
PDB level.

Here is an example in which we create a restore point at the CDB level:

And here’s one at the PDB level, with guaranteed Flashback Database:

While still in the same PDB, PDB1, we can see and use both these restore
points:

But when we use the same query from another PDB, we can’t see the
restore points defined under PDB1. We can see only the restore points
defined under the root container:

NOTE

In multitenant, CON_ID=0 displays information that is at the CDB
level and not related to any specific container, neither CDB$ROOT
nor any PDB.

We can also create restore points with the same name in different
containers. In the following we are still in PDB2 (CON_ID=5):

Those restore points have the same name. However, the CON_ID and
PDB_RESTORE_POINT columns let you know which one is at the PDB
level.

Here is the result when running the same query from CDB$ROOT:

For those of you who would like to see this information listed in RMAN,
unfortunately, at the time of writing, this functionality is missing, but we
have filed an enhancement request for it:

Another piece of information lacking in RMAN is the
CLEAN_PDB_RESTORE_POINT. It is another addition in 12.2, and we will get to
this shortly.

PDB Level and Flashback Logging
Related to this topic, you should be aware of an important point. Using our
example, with FLASHBACK OFF and a guaranteed restore point only at the PDB
level for PDB1 (CON_ID=4), it seems that flashback logging is actually
enabled for all CDB datafiles.

From the CDB$ROOT, we check the flashback mode:

As expected, this is what we have when flashback logging is off, but we
have a guaranteed restore point.

So let’s connect to PDB2 and check that we see no guaranteed restore
points from there:

Then insert 1000 rows into an existing table:

Now we check the session’s statistics related to flashback:

This output reveals that these blocks have to be written into the flashback

logs—proof that flashback logging occurs for changes in all containers, as
long as one container has a guaranteed restore point.

In the current version, 12.2, you can enable flashback logging only at the
CDB level, but the error message when trying it at the PDB level gives the
impression that flashback logging will be a possibility at the PDB level in the
future:

Clean Restore Point
We have seen that in a shared undo CDB, the flashback PDB needs an
auxiliary instance to restore the undo tablespace to clean ongoing
transactions. This makes the flashback less efficient, in both time and
required space. The preferable solution is to run in local UNDO mode.

However, even when in shared UNDO mode, you don’t need to restore
the UNDO when you know that you have no ongoing transactions at all. If
you want to create a restore point in production before applying a patch or an
application release, or in a test before a run of regression tests, you can close
the database. And when it’s closed cleanly, there are no outgoing
transactions. In this scenario, we can create a clean restore point that can be
used to flashback efficiently, even in shared UNDO mode.

The following example affects a database with shared UNDO, created
without a LOCAL UNDO clause:

As you have seen before, no property for LOCAL_UNDO_ENABLED means
that it is false. We connect to PDB1, which is currently opened, and try to
create a clean restore point:

But to be sure it’s a clean restore point, we need to close the PDB:

Note that we have created a guaranteed restore point here because we do
not have FLASHBACK ON, and we want to be able to flashback to it.

At this point, we can open back the PDB. Any blocks written to the
datafiles will have their previous image written to flashback logs, so you can
quickly flashback to the initial state, without the need of an auxiliary instance
thanks to the clean restore point:

The concept of a clean restore point applies to shared UNDO mode only.
It makes no sense in local UNDO mode, and if you try to use the same
syntax, you will get the following error:

Resetlogs
This chapter is all about bringing a PDB to a point-in-time in the past. When
you do that on a CDB or a non-CDB, you have to OPEN RESETLOGS. This
operation resets the REDO stream because it is interrupted: the REDO that
was generated before the recovery or the flashback cannot be used on that
new incarnation of the database. When you open a non-CDB or a CDB with
resetlogs, the online redo logs are re-created and the old ones are discarded.

The REDO stream is at the CDB level, so the “resetlogs” term may be
misleading when dealing with a PDB. The redo logs are not re-created, and in
this case, they just continue to log all changes for all modifications that occur
in the instance. But it’s the same idea: mark the REDO stream so that the
REDO from that point on is known to protect a new incarnation of the PDB.

In the following example, we flashback PDB1 and try to open it without
the resetlogs clause:

The message is not explicit here, because we have two possibilities with
the current state of the datafiles: we can choose to revert our flashback and
apply recovery to bring it up to the latest state, or we can open it in that state,
because this is what we wanted to do with the flashback operation:

Each PDB’s open resetlogs operation creates a new incarnation of the
PDB, which is a subset of the CDB incarnation. You can list the history of all
incarnations by querying the V$PDB_INCARNATION view. Here is an
example, where we have flashed back the PDB to the same restore point
several times:

This is a massive advantage of the multitenant architecture: you don’t
need to restart the instance when you flashback a PDB. This makes the
flashback operation very fast—in fact, just a few seconds. It can be used for
test databases where, for example, a number of tests must run on the same
data. This is much faster than reimporting from a dump file, and it’s even
faster than reattaching a transportable tablespace.

Flashback and PITR
This chapter covers two ways to bring a PDB back to a previous state. They
have some common effects, but are used for different situations.

When Do You Need PITR or
Flashback?
Taking a production database back to a point in the past is rare, because you
will lose all transactions that have happened since that point. If you encounter
a logical or physical corruption, Flashback Database is considered only on
those occasions where the corruption is database-wide and occurred in the
last few seconds. But in other cases, you can benefit a lot from restore points

and flashback. For example, before any maintenance operation, such as an
application release or database upgrade, you can take a guaranteed restore
point, and if anything goes wrong, your fallback scenario takes only few
minutes to enact. And because you flashback before reopening the service,
you don’t lose any transactions. Just don’t forget to drop the restore point
when maintenance is completed and validated.

The benefit of flashback shows up every day in test environments,
especially in continuous integration environments. If you have several runs of
tests that need the same data set, without flashback, rerunning all DDL and
DML simply takes too long, and a dump import is also probably not quick
enough. A solution is potentially found in the transportable tablespace
functionality, but even that takes too long to import all metadata. Flashback is
the best solution to revert back to a previous state, but before multitenant this
required an instance restart. In multitenant, the flashback PDB takes only a
few seconds, so it can be run hundreds of times during a batch of
nonregression tests.

TIP
A PDB administrator can flashback a PDB as long as the admin has
the SYSDBA privilege granted on that PDB. There’s no need for a
common user for that. So it’s possible to give that right to a trusted
application DBA so that he or she can interact with this PDB only.

Impact on the Standby Database
We will detail the Data Guard configuration in multitenant in Chapter 11, but
you already know that the REDO is at CDB level, and that what you do in a
primary database, especially when changing the structure or in case of OPEN
RESETLOGS, can have consequences on the physical standby.

Changing UNDO Mode
When changing from shared UNDO to local UNDO, you have to startup
upgrade. If you are using real-time query (Active Data Guard), you need to

stop it while the primary is in startup upgrade: the REDO from upgrade mode
cannot be applied when a physical standby is open read-only. The second
point is that new UNDO tablespaces will be created, so be sure that
StandbyFileManagement = ’AUTO’.

Flashback or PITR on Primary
After a PDBPITR or a flashback PDB, you have to open the PDB with
RESETLOGS. The managed recovery process (MRP) on the physical standby
stops when it encounters the RESETLOGS marker because the datafiles are at
the same state as the primary before the flashback, and current REDO cannot
be applied on the previous incarnation. Here is what you can see in the
alert.log:

The message is clear: You must do a PITR on the physical standby as
well, to the same point-in-time. If the physical standby is in FLASHBACK ON
mode, it’s easy. Stop APPLY, flashback to the SCN given in the alert.log, and
restart APPLY:

An alternative if you are not in flashback mode is to recover from service,
which is a 12c feature:

Disable Recovery on Standby
In multitenant, you don’t want the standby to stop the APPLY, because one
PDB has been flashed back. So instead of waiting for the message shown
previously, you should disable recovery for that PDB before the OPEN
RESETLOGS on the primary. In the standby database, you suspend APPLY just
for the time it takes to disable recovery. Here are the commands from the
Data Guard command line interface (DGMGRL) and SQL*Plus:

Then recovery occurs for the CDB except for this PDB. You can
flashback or point-in-time restore the PDB1 on the primary and open it with
resetlogs. Then re-enable its synchronization on standby:

From there, the PDB1 is synchronized again with the primary.

Auxiliary Instance Cleanup
When an auxiliary instance is created automatically, it is supposed to be
cleaned up at the end of the operation. But our recommendation, after lots of
testing, is to check that nothing is left over, especially when something has
failed in the process. Check AUXILIARY DATAFILE COPY in
V$RECOVERY_AREA_USAGE that no unreclaimable file is left over. It’s also a
good idea to have a look at FLASHBACK LOG to be sure that you removed the
unnecessary guaranteed restore points.

You may see other traces from the auxiliary instance that remain, such as
in the DIAG directory. Here is ours after a few PITRs in shared UNDO:

With this in mind, if you have automated PITR in shared UNDO, you
should adapt your housekeeping scripts to clean up appropriately.

Summary
The PITR and flashback features that were missing in 12.1 have been
implemented in 12.2, thanks to the introduction of local UNDO mode. On
production databases, it provides a safety net for your application releases or
maintenance operations, giving you an instantaneous fallback plan. But it’s in
development environments that the feature will bring more agility. How often
do you have to refresh environments, restore the previous state of a test
database, or revert a change made by a test that touched more data than
required? PITR and flashback, plus the moving and cloning features we will
cover in the next chapter, truly make multitenant the agile environment for
modern development.

T

CHAPTER
9

Moving Data

here are probably very few (likely no) Oracle administrators charged
with the care of a solitary database who don’t need to share data
among other databases. Equally implausible is an administrator who

doesn’t need to upgrade or move a database to a different platform at some
point. In most situations, at one point or another, the administrator is required
to move data at the physical level—that is, the admin will be required to
move the datafiles or entire databases from one place to another.

Multitenant architecture brings new scenarios and challenges into play
that must be addressed by the DBA, because it is the DBA’s job to manage
the database at this level. This includes new features such as the ability to
move complete pluggable databases (PDBs), along with extensions to
existing features, and it presents new opportunities regarding how to
approach some core DBA tasks.

The multitenancy architecture encompasses multiple PDBs. The first
feature we will explore is disassociating a PDB from the container database
(CDB)—that is, moving the physical files, and then making the PDB part of
another CDB. This unplugging/plugging in ability with a PDB basically
involves a database move.

We also want to be able to copy a database—and even better, we want to
let Oracle perform the file copy for us. Database cloning extends past a
simple local machine copy, because in Oracle Database 12c we can clone
from a remote database or harness storage features to make “cheap” copies.
One facet of this feature is that the source can be an Oracle Database 12c
non-CDB, thus enabling a simple way of converting a non-CDB into a PDB.

Oracle Database 12c also introduces many new data movement features

that are not PDB-specific, and one of the most interesting is the ability to
move databases between previously incompatible platforms.

And last, but not least, we can move PDBs to and from the cloud.

Grappling with PDB File Locations
Moving all the PDB files involves, of course, altering the file locations. The
easiest approach is to work with Oracle Managed Files (OMF) and let Oracle
generate the file paths and names, using the CDB name and PDB GUID—for
example,
/u01/app/oracle/data/SRC/29E63B5BE26B3ABEE053050011ACA3F3/datafile/o1_mf_system_cb3gffcj_.dbf.
In other words, you can specify the DB_CREATE_FILE_DEST initialization
parameter and let Oracle take care of this for you.

However, if you want to manage the locations yourself, you can use the
FILE_NAME_CONVERT parameter to map the files to new locations in the
create pluggable database statements.

If the datafiles for the target database are already in place, you can
specify NOCOPY, so that Oracle uses the files already present. And if the new
location is different than the source location, you can use the
SOURCE_FILE_NAME_CONVERT clause to map the files to the new location.

The examples in this chapter show how these various options are used.

Plugging In and Unplugging
As you know, a PDB is an independent subset of a CDB. As such, it enjoys a
kind of independence, which you have already learned about in the chapters
on management and security. Therefore, it makes sense to be able to move
data from a single PDB, or indeed the whole PDB, from one database to
another.

Moving an entire non-CDB (or the CDB as whole) has always been
possible with Oracle. You simply move the datafiles to a different place; set
up the configuration files for networking; set up the password file, init.ora,
and so on; and then start the database from the new location. The Recovery
Manager (RMAN) duplicate command further simplifies this process, but
we won’t go into detail on this here. However, you should review Chapter 11,
where we explain how to create a standby database, because the two

processes are similar.
With multitenancy, moving databases has become easier, and the

expectation is that these moves will now occur more frequently as a result.
First of all, you don’t need to move the entire CDB, which means that much
of the tedious configuration work disappears. There is no need to handle
relocating the password file, init.ora, /etc/oratab, for example, and this makes
the move simpler, and thus a potentially viable option in many more
scenarios.

Second, PDBs contain significantly less Oracle internal data dictionary
information. So, as discussed in Chapter 4, you can create a new CDB with a
new patch version, and then move the PDBs to this new CDB. From there,
you can patch the PDB, which is actually much faster, because there is less
dictionary data to update.

Furthermore, multitenancy is often thought of as being synonymous with
consolidation, which means having many databases in a CDB. This can
inevitably lead to situations in which the number of PDBs outgrows the
server capacity. The easy solution now is to move some of the PDBs
someplace else.

NOTE
Unlike other cloning options, the plug-in operation does not need a
source database up and running; only its datafiles and an XML
parameter file must be available. This opens up new scenarios for
provisioning, such as making the files available on various media or
for download.

Unplug and Plug In a PDB
Let’s start with the simplest scenario—unplugging a PDB and then plugging
it into a different CDB, as depicted in the following diagram. Note that the
PDB must be closed during this operation.

After this command has completed, the unplugged database (PDB)
consists of its datafiles, which are still in place as they were, along with a
new XML file that describes the database (version, DBID), tablespaces,
datafiles, installed options, and database parameters set at the PDB level.

Now we copy the files to the target database location. A simple scp to the
target server will do:

The third step is to plug in the database. Note that the files will probably
be in a different location than they were on the source, as recorded in the
XML parameter file, so remapping may be required.

An Unplugged Database Stays in the
Source
Even after we unplug a PDB and produce the related XML file, the PDB
continues to be part of the source database, as shown in v$pdbs and
dba_pdbs:

This also means that the PDB is still part of any RMAN backups, as you
can see in the following:

This ensures that the PDB’s data is still protected, even before we plug it
into the target database and begin backing it up there. It also means that all
the original datafiles are still in place, and we have ample time to copy them
to the desired location for the plug-in. However, there is little else that can be
done with this unplugged PDB for now:

Once the PDB is plugged in and backed up in its new location, we can
drop the PDB from the original source CDB to clean up:

NOTE
The default setting is KEEP DATAFILES. This prevents us from
accidentally dropping the data files before we copy or move them to
the target location.

What Exactly Is in the XML File?
It’s worth reviewing the XML file that describes the unplugged PDB. In
doing so, we can see exactly what information is retained when we move the
PDBs from one CDB to another, and it also shows what Oracle can actually
check when considering whether the PDB is compatible to be plugged in (as
we will discuss in the next section).

The following are some parameters for a PDB named PDBXML:

In this section we see various version and compatibility-level listings.

The vsn refers to the version (203424000 is 0xC200100 in hex, which is an
internal representation for 12.2.0.1.0—convert the number digit-by-digit to
decimal, 0xC is 12). This ensures that the versions match or, if required,
whether an upgrade is needed upon plug-in. Note also the byte order; 1 is
little endian.

We also see the different PDB IDs: cid (CON_ID), DBID, cdbid
(CON_UID), and guid. This is also not a non-CDB (hence ncdb2pdb is 0),
but later in this chapter we will discuss the details for converting such a
database.

For each tablespace, we see the following section:

This covers name, type (temporary tablespace has 1), encryption, list of
files—file name, absolute file number, relative file number, create SCN, size
in blocks, block size, version, DBID, checkpoint SCN, and autoextend
settings.

The csid is the database character set (873 is AL32UTF8), and ncsid is
the national character set (2000 is AL16UTF16; we can verify this with SQL
function NLS_CHARSET_ID). The remainder lists all the installed options and
their various versions:

This penultimate section specifies the following:

 Whether Data Vault is enabled
 The APEX version
 Parameters set at the PDB level
 Installed SQL patches
 Versions of time zone file
 Wallet
 Defined services
 Patches installed by OPatch

Finally, the XML file includes AWR load profile information, and
whether local undo has been enabled.

Check Compatibility for Plug-In
In the examples so far we have taken a few shortcuts, ignoring the fact that
Oracle imposes some limitations on PDBs with respect to installed options,
character sets, and versions. You can either read in detail the limitations or,
perhaps more effectively, ask Oracle to perform these checks, using the
supplied DBMS_PDB package.

Get the XML Describing the Database
First, we need to get the XML file that describes the unplugged database. If
we have unplugged the PDB, then we already have it on hand and can skip to

the next step.
However, we can ask Oracle to generate the XML file even if we haven’t

yet actually unplugged the PDB. Although this requires an extra step, it is
definitely better to have this information ahead of time, knowing the results
of the compatibility check well before we perform the unplug. This will give
us ample time to rectify the issues or come up with an alternate solution—
such as creating a new target CDB—and all this can occur well before we
incur any downtime on the database.

Run the Compatibility Check
Running the compatibility check is simple and is achieved by executing one
PL/SQL function in the target database root or application root:

Of course, if the answer is NO, we want more detail, and this is readily
available in the PDB_PLUG_IN_VIOLATIONS view. The view can contain
data even if the answer is YES, so it is a good idea to review this regardless
of the answer.

NOTE
If you are plugging in databases as part of an upgrade, the
compatibility check will return NO, because the versions are
different. This is to be expected, and you can still plug in that
database, although you won’t be able to open it until you have first
finished the upgrade. This is covered in more detail in Chapter 4

Read the Requirements
The list of compatibility requirements is changing with each version, so it is
advisable always to review the list for the particular version in use. In short,
however, there are four main requirements:

 Platform The databases need to be of the same endianness.
 Options The databases must have the same options installed

(partitioning, data mining, and so on).
 Versions The source PDB must be the same version as the target CDB

before the PDB can be opened. However, it is possible to plug in a
PDB of an older version and upgrade it, and then it can be opened.

 Character sets The character sets must match. Version 12.2 eases this
condition: if the CDB uses AL32UTF8, the PDB can use any
character set.

Plug In a PDB as Clone
To this point we have been thinking of the plug-in/unplug process as a move
operation, with a single PDB at the start and end, even if the PDB at the end
runs somewhere else. Sometimes, however, we need to create a copy of the
PDB. Although the other options described in the upcoming “Cloning”
section are usually used for this, it is possible to use pluggable functionality
to create a copy, too. The only principal difference is the number of copies
that will reside in the environment, and, as with non-CDB databases, every
copy needs to be uniquely identifiable; otherwise, we end up with collisions
when DBID, GUID, or CON_UID is used. Note that the RMAN catalog mandates
that DBID be unique, and a single database won’t allow multiple identical
PDBs, either. Fortunately, the solution is easier than the description of the
problem itself: just add the AS CLONE clause when you’re performing the
plug-in operation.

Let’s start with a simple PDB, created at the source database:

Now let’s unplug it:

Now plug it into the target database. This will be a move operation, so it
will keep its existing IDs.

The PDB has been created:

You can see that Oracle changed the CON_UID, but the DBID and GUID
values are still the same.

As mentioned, Oracle won’t allow the same database to be plugged in
again:

The AS CLONE prompts Oracle to generate new identifiers, thus allowing
us to have multiple copies of the same source PDB in the CDB:

PDB Archive File
Starting with Oracle Database version 12.2, the plug-in/unplug operations can
also work with PDB archive files. A PDB archive is a compressed file
containing the XML parameter file and its data files, as well as any other
necessary auxiliary files (wallet). This is really just a convenience option,
because it’s easier to copy one compressed file than multiple files.

The basic syntax is identical to that used to unplug to XML file, with the
only difference being the specified extension of the target file:

And if we look at the output file more closely, we can see that it’s just a
plain ZIP file:

Note that the XML file inside the archive still refers to the same paths for
the PDB on the source, so it’s the same result that we would get from
unplugging into XML; however, these paths are ignored. Instead, Oracle
unpacks all the datafiles to the directory where the PDB archive is located.
This is only a temporary location, Oracle then moves the files to the proper
place. NOCOPY is not a valid option here.

Cloning
In contrast to unplugging operations, cloning does not go through the
intermediate step of working with a staged set of files (datafiles and XML file
or a PDB archive). Instead it, more directly, reads the files of a running CDB
and copies them to a new PDB. This copy can either be local—inside a single
CDB—or remote—to a different database, copying the datafiles over a

database link.
A clone operation always assigns a new GUID and UID, and there is no

concept of moving, as in plug-in/unplug. The relocate feature is no exception
to this, assigning new IDs in the process.

Cloning a Local PDB
The easiest use case is a clone inside a single CDB—a local clone, in which
no other CDB is involved. The following diagram illustrates this operation:

With Active Data Guard, the standby database will also do the same
copy. Therefore, no manual intervention on the standby side is needed; this is
unlike in virtually all other cases described in this chapter.

Although a local clone is the simplest use case, there are still multiple
options to consider. Let’s start with the most basic one:

In Oracle Database 12.1, the source PDB must be open read-only (there
are even bugs when Oracle doesn’t check the open mode; clone in read/write
mode then fails with various internal errors). From Oracle Database 12.2 on,
the source PDB can be open read/write, provided that the CDB is in
ARCHIVELOG mode and has local UNDO enabled. Either way, we must be
logged in as a common user in the CDB root or in the application root.

After the clone finishes, we must open the database in read/write mode,
because Oracle won’t allow any other operation on it until the database has
been opened at least once:

Snapshot Copy
Given that a clone is a one-to-one copy of the source PDB, you might wonder
whether the underlying file system can help in performing such copies more
efficiently. After all, snapshot and copy-on-write functionality are, nowadays,
widely used and proven storage features.

The answer is a “limited yes.” If the database is on a supported file
system, or Oracle Direct NFS is in use, a clone can be created as follows:

This is one of the features that we expect will evolve rapidly, changing
with every patch set, so it’s advisable that you regularly review the latest

status in the Oracle documentation and in My Oracle Support note
1597027.1.

Generally, Oracle favors and promotes ASM Clustered File System
(ACFS) and Direct NFS. In the former, the file system provides read/write
snapshots, which means that a source PDB can be open and written to. By
contrast, the Direct NFS approach mandates a read-only source PDB, but on
the other hand it supports many more file systems, essentially needing only
sparse file support for the target files. In both cases, the source PDB cannot
be unplugged or dropped.

The specification as to which snapshot technology to use is regulated by
the CLONEDB initialization parameter; TRUE implies use of Direct NFS
clones. Also note that Direct NFS might require setting up credentials in the
keystore; refer to the documentation for more information and specific
syntax.

Cloning a Remote PDB
The remote clone process extends the local clone concept, with the
differentiator being that the source and target database are distinct, and the
communication between the two happens over a database link, as shown in
the following diagram:

You must be logged in as a common user, either in the CDB root or in an
application root. In addition, a database link must be available, because this
link will be used to transfer all the metadata and datafiles. This link should be
able to connect either to the target CDB or to the PDB.

With plug-in/unplug operations, the database must be compatible, as
described previously in this chapter. In a local clone, these conditions are
trivial to fulfill, but in a remote clone we must check them. We can use the
same steps you used with the DBMS_PDB package, as outlined in the section
“Run the Compatibility Check,” earlier in the chapter.

As with a local clone, if we want to keep the source PDB open read/write,
we need to use version 12.2+, with ARCHIVELOG mode and local UNDO
enabled. In case of a remote clone, it’s sufficient if just one of the sides
involved in the clone has local UNDO and ARCHIVELOG mode.

Splitting the PDB
In all the clone operations, we can specify the USER_TABLESPACES clause.
This is a list of all the tablespaces that we want actually cloned; Oracle will
add the necessary system tablespaces, but all other tablespaces will be
omitted.

In respect to this, two use cases come to mind: First, we may want to
provide our developers a subset of the production database, omitting some
archival data and keeping the overall size of the clones smaller. Or, second,
we may want to split a large, monolith PDB into more manageable, smaller
PDBs. A good example of this would be if the source PDB was created by
importing a non-CDB database that consolidated multiple applications, each
in its own schemas and tablespaces.

Nodata Clone
A nodata clone is a special type of clone. It does not contain any user data,
and all the tables listed in user tablespaces are imported empty, thus
effectively creating a metadata-only copy. This being the case, its value is for
specific use cases only.

This function is possible only from 12.1.0.2. Furthermore, it cannot be
used in conjunction with index-organized tables, table clusters, or Advanced
Queuing tables, additionally constraining its usefulness.

With this function, the new database has the same tablespaces as the
source; however, the datafiles are not copied, but instead are created empty.
The size of the datafiles matches those on the source, and in the case of
datafiles set to autoextend, the new files are created with the initial size.

Refreshable Copy
A hot clone, or a clone from a read/write source PDB, works by recovering
all the changes that occur during the copy itself, by use of the
ARCHIVELOGs and UNDO data.

Extending on this idea, Oracle can also use this data to recover the clone
repeatedly, regularly bringing it up-to-date with the source PDB. This type of
clone in Oracle Database 12.2 is a refreshable copy, and it can be refreshed
automatically (EVERY nn MINUTES) or manually on demand.

Note, however, that the PDB must be closed for the refresh to occur, both
in on-demand and automatic modes. The PDB cannot ever be open
read/write, as any local change would prevent Oracle from applying undo
from the source. Thus this is the only case where a newly cloned PDB is not
first opened read/write in order to be usable.

As an example, let’s request a manual refresh. Again, note that this must
be done from within the PDB and, as mentioned, the PDB must be closed:

A manual refresh is possible for PDBs configured for both manual and
automatic refresh.

A PDB configured for refresh has the status REFRESHING in the
CDB_PDBS view.

Relocate
A common use case in database administration is the move of a database, not
just a plain copy. To this end, version 12.2 introduces the relocate feature,
which makes this explicit. Working in conjunction with the hot-cloning
method introduced in the same version, this allows much shorter downtime,
instead of doing a clone and then dropping the source.

When we issue the RELOCATE statement, the source database is still open,
so it needs to be open read/write and requires local UNDO and
ARCHIVELOGs, as expected. The first stage of this process is to clone the
PDB while the users are still connected to the source:

After this, the old PDB remains open and read/write, and it can still be
accessed and used. At this point, the new PDB is mounted and has the status
of RELOCATING:

It’s the opening of the new, relocated PDB that finishes the relocation
and drops the old database.

Note that this feature requires more privileges on the source side than all
the other options—namely, that the user that the database link connects to
needs the sysoper and create pluggable database privileges.

NOTE
We can also keep the existing PDB around (in RELOCATED state),
to redirect the connections, if the listeners can’t do it for us. This is
enabled by specifying AVAILABILITY MAX in the CREATE
PLUGGABLE DATABASE … RELOCATE command, and in this
case, it’s up to us to drop the source PDB, when it’s no longer
needed.

Proxy PDB
Sometimes, with PDBs moving around, it can be difficult for you to keep
track of all the various PDBs and updating clients to connect to the correct
location for each. Perhaps even more critically, features such as container
map and queries using the CONTAINERS() clause (both described in more
detail in Chapter 12) require all the participating PDBs to be in the same
container database.

To address this, Oracle Database 12.2 brings to the table the concept of a
proxy PDB. These PDBs act as a façade, redirecting all requests to the
referenced underlying PDB location via an internal database link. So any user
commands executed while connected to the proxy PDB affect the remote
PDB, not the proxy itself, with these exceptions: ALTER PLUGGABLE DATABASE
and ALTER DATABASE statements.

A proxy database has the IS_VIEW_PDB column set to YES in the
CDB_PDBS view, so this is a way of identifying one:

Note that a proxy PDB actually clones the SYSTEM, SYSAUX, and
temporary tablespaces of its referent, so it’s not a completely empty shell.

A proxy requires a database link to be defined, and this is one that
connects to the target CDB root or the PDB. Although a proxy can point back
to the same source database, a database link is always required. This database
link is used only during the setup, as the proxy PDB actually creates a new
internal database link for passing the user requests. However, this internal
database link is not a simple copy of the link that was manually created;
instead, Oracle generates this using the host name of the target CDB and port
1521. Note that it is possible to specify the PORT and HOST if these defaults
do not match your environment.

Application Container Considerations
An application container, introduced in Oracle Database 12.2, does not
significantly extend cloning functionality. At this stage, only individual PDBs
—not the whole application—can be unplugged/plugged in and cloned, and
an application root can be unplugged only when empty.

NOTE
The location of a new PDB, created with clone or plug-in, is
determined by the current container used when executing the create
pluggable database command, and this can be run in the CDB
root or in an application root.

Converting Non-CDB Database
As a special case, Oracle allows a database that does not use the multitenant
architecture to be plugged in. Such an operation is more of a migration path
from the legacy architecture to the new container-based one, not merely a
move of data.

For this feature to work, both the source non-CDB and the target CDB
versions must be 12.1.0.2 or later. The endian must also match, as the
datafiles cannot be converted this way and, as usual, the installed options
must also cohere.

There are multiple ways to approach this procedure using PDB
operations. The non-CDB can be plugged in, or it can be cloned. Both
options are shown in the following illustration.

Plug In a Non-CDB
For a non-CDB plug-in, we need to run the compatibility check, and the
source database must be open or open read-only. Also, as usual, we should
back it up before we attempt the plug-in, in case anything goes wrong.

We create the XML file describing an unplugged database:

Next, we can check for any issues or violations, running a simple script in
the target CDB:

In this output, the first message is obvious and expected, because we are
going to plug in a non-CDB. However, the second message is an example of
a parameter mismatch. Some of the parameters can be set at the CDB level
only, so upon plugging in the PDB, the value of the CDB will override it. It is
therefore up to us to determine whether we set the CDB parameter to match
the original non-CDB one or not. This is the same issue we face when putting
multiple different PDBs into the same CDB, as many parameters are global
across all PDBs.

When we are satisfied with these settings, we are ready to perform the
actual plug-in operation.

The XML parameter file must be created from a read-only non-CDB in
order for the SCNs to be consistent. Thus, if it was generated from a

read/write database, we’d set that non-CDB to read-only and create the XML
file again. Following on from there, we can shut down the source database,
because it won’t be needed anymore. Note, however, that after the plug-in
completes, we could continue to use this non-CDB source database, because
unlike an unplug of a PDB, it is not marked for drop.

Then we can plug in the database:

Alternatively, we can plug it in, keeping the files in place. In that case,
we should be aware of the TEMP file trap that may be encountered in many
scenarios: unless we specify TEMPFILE REUSE, Oracle will try to create new
tempfile(s) and fail when it finds the file already exists:

As indicated in our earlier violation check, we need to run the conversion
script, noncdb_to_pdb.sql, at this point. This step is mandatory. Although we
might be able to open the database without it, we would face various issues
later, such as having a corrupted dictionary, and similar. In version 12.1, it’s
not even possible to rerun the script if it fails, because that also corrupts the
dictionary. For more on this, refer to My Oracle Support note 2039530.1.

In our tests, the longest running section of this script was in fact
utl_recomp, which compiles all invalid objects.

Now we can open the new PDB and begin to use it:

Cloning a Non-CDB
Another approach for non-CDB conversion is to use cloning. The difference
between this and the previous approach is the same as those with
unplug/plug-in versus cloning methods for PDBs. This means that a clone
requires fewer steps, can be done remotely, and does not require the physical
copying and transmission of files.

NOTE
The clone of a non-CDB is always remote; the source database is
different from the target.

In the following command, we specify the special NON$CDB name for
the PDB:

Once these commands are completed, we need to run the
noncdb_to_pdb.sql script, and then we can open the database:

Moving PDBs to the Cloud
Another use case of PDB operations is to move the database to the cloud—or
back from cloud to on-premise. In essence, this does not differ from moving
the PDB around our on-premise servers. The cloud (Oracle or other) database
is just another Oracle database and all the operations described in this chapter
are valid there as well, whether using the command line or Enterprise
Manager.

Thus, for the move, we can use ordinary unplug and plug-in, remote
clone, or the full range of options, such as relocate or proxy PDB. For some
of the basic scenarios, note that Enterprise Manager Cloud Control has a
wizard we can use, shown in Figure 9-1.

FIGURE 9-1. Clone to Oracle Cloud in Oracle Enterprise Manager

Triggers on PDB Operations
Like CDBs, PDBs support database event triggers, including opening and
closing the database, server error, logon/logoff, and so on. The only trigger
that is CDB-only is AFTER DB_ROLE_CHANGE, as switching primary/standby
can occur on CDB only (we discuss Data Guard in detail in Chapter 11).

A new trigger introduced in 12c is the BEFORE SET CONTAINER or AFTER
SET CONTAINER, fired when a session changes the current container using
ALTER SESSION SET CONTAINER. The use of this trigger is very similar to a
logon/logoff trigger, especially for connection pools and the like, where one
session switches between containers; the single logon/logoff trigger is not
enough to cover different requirements for the various PDBs.

Finally, and perhaps most importantly in the context of this chapter, as
they apply to the types of operations described herein, two new trigger types
were added that work at the PDB level only: AFTER CLONE and BEFORE
UNPLUG.

As the name suggests, the AFTER CLONE trigger fires at the new database,
after it is cloned. If the trigger fails, the new database is left in an
UNUSABLE state and the only operation permitted is to drop it.

The BEFORE UNPLUG trigger fires when the unplug operation starts. If the
trigger fails, the operation does not happen, so no XML file is created and the
PDB remains part of the CDB.

In both cases, when the trigger succeeds, it is deleted.
There are several use cases for triggers—for example, if we want to

delete any stored passwords and keys to external systems and drop database
links before we unplug the database and distribute it. Another use case would
be to employ it to mask data after we have cloned a PDB to a test
environment.

Full Transportable Export/Import
The transportable database feature is a logical step-up from the trusted and
proven transportable tablespace feature, first introduced way back in 8i.

Transportable tablespace functionality was originally introduced to move
just one or a few tablespaces, such as from an OLTP system to a data
warehouse. But over the years, its usage developed to moving large amounts

of data, such as all of the user datafiles during a migration or upgrade.
Additionally, transportable tablespace was also enhanced to handle cross-

endian data movement, although one gap still existed, in that it could not
move non-table objects such as views or PL/SQL.

The new transportable database feature now addresses this. It handles
user tablespaces like transportable tablespace always did and, in addition, it
can also export the other objects as a Data Pump export would do, in a single
step. And being based on the proven foundation, it includes cross-endian
conversion possibilities.

Like transportable tablespaces, the transported tablespaces must be read-
only during the import process. RMAN allows a workaround for this for
transportable tablespaces, in that it can create an auxiliary instance and run
the export there, but this is not available for full transportable export.

This full transportable export feature has been available since version
11.2.0.3.

The multitenant twist on this feature is that the result can be imported
into an existing CDB. In other words, it can be used to plug in a non-CDB
into a CDB. The advantage of this, as opposed to the simpler way described
earlier, is the cross-endian support. It also does not automatically copy the
files, so if the conversion happens on the same machine, we do not need to
copy the datafiles at all, speeding up the conversion and saving disk space.

Another scenario is plugging in a PDB that would otherwise not meet the
requirements: so we can move a database cross-endian, or get around an
unmatched list of installed features. (Of course, the target database needs to
have installed any features the new PDB and its users and applications will
use.)

Unlike the simple and standard plug-in, full transportable import requires
that an already existing (empty) database be created first. The import process
then imports only user data.

Note also that only one PDB is exported at a time; and when we specify a
connection to the CDB, only the CDB user data is exported, not the PDB’s.

As an example, let’s export a non-CDB database and import it into a
fresh new PDB.

First, all of the user tablespaces must be made read-only. However, the
database itself must be read/write, as Data Pump creates a job table in the
SYS schema:

Then we run the Data Pump export, creating a directory beforehand, if
necessary. Because this exports all the object definitions, it does take some
time, although this is minimal in comparison to a data export:

As you can see, the export conveniently prints the list of necessary files
—the dump file and all the datafiles—at the footer of the screen output and
the log.

Now we create a new PDB:

The next step is to copy the files to the destination directories and change
the endian using RMAN if necessary:

Now we import the dump:

Transportable Tablespaces
Not much has been altered with this functionality since 11g. The
transportable tablespace feature is still present in multitenant and can be used
to move data from one database to another, but it’s more complicated than
unplug/plug-in and limited when compared to a full transportable export,
although it still has its use cases.

One notable unique feature is the ability to use RMAN to obtain the
datafiles without setting them to read-only, thanks to using an auxiliary
instance. In 12c, RMAN has been further enhanced with the addition of
syntax to specify a tablespace in a particular PDB:

See Chapter 12 for more examples of how transportable databases can be
used.

Summary
In this chapter we covered one of the most interesting topics which the
multitenant feature has given rise to: separation of the PDBs and their

movement from a CDB to another one. As we have seen, there are a
multitude of options, with many ways leading to Rome, and each has its own
pros and cons.

As you gain more real-world experience with multitenant, you’ll find this
functionality more and more useful for solving problems in ways not possible
before. This creative leverage comes with real-world experience, lots of
experimentation and testing, and a fresh mind when approaching problems.

PART
IV

Advanced Multitenant

U

CHAPTER
10

Oracle Database Resource Manager

p until now we have focused on creating and configuring a
multitenant database environment, including key aspects of the day-
to-day administration tasks. In this part of the book we move toward

some of the more advanced configuration options. We will begin with a look
at Oracle Database Resource Manager, before moving on to disaster recovery
(DR) implementations using Oracle Data Guard, followed by a focus on the
movement and sharing of data in the final two chapters.

In this chapter, the focus is Resource Manager, which may be familiar
territory for some, albeit with new considerations to factor in with Oracle
12c. One of the key advantages of multitenant is consolidation, but it also
introduces new questions in relation to Resource Manager, such as these:

 How do you manage resources such as CPU, memory, and I/O
available to your database?

 Can resource management be micromanaged in a way, enabling
distribution of resources to pluggable databases (PDBs) depending on
priorities or even time schedules?

 What about resource allocations inside a PDB itself?
 Can resources be managed at a more fine-grained level in a PDB?

In this chapter, we will address these questions and show how you can
easily get started with Resource Manager in a multitenant database
environment.

Resource Manager Basics
We have already spoken about some of the key advantages of multitenant,
such as the ability to consolidate many databases easily into one, as well as
the flexibility to provision new databases quickly. In conjunction with these
advantages, one core area of the database functionality needs consideration,
and that is database resource allocation. Imagine having a server with an
abundance of resources such as CPU, memory, and fast storage, such that you
would expect everything to be well-equipped for general operational
purposes, only to realize later that one of the PDBs consumes virtually all of
these resources during busy periods. The flow-on effect is that other PDBs
are starved of resources during these times, with the end result being non-
optimal performance and disgruntled end users.

By default, operating systems will attempt to distribute resources as
requested and do not prioritize among different processes, because they are
not aware of which processes should have higher priorities than others. There
are some exceptions, but these operating systems require manual
configuration or the use of additional software to effect resource allocation
and prioritization in some shape or form.

Oracle Resource Manager, which resides within the database itself, has
full access to all the runtime information and performance statistics. All the
information that describes what is happening inside the database is available,
and if Resource Manager is configured correctly, the database can draw upon
this information to make decisions on resource distribution; we can ensure,
then, that if one area of the database is busy, other PDBs are not starved of
resources.

In using Resource Manager in a multitenant environment, the following
options are available to you:

 Distribute resources among PDBs based on their priority, ensuring
that PDBs requiring higher priority and more resources have the
appropriate amount of resources allocated

 Limiting CPU usage of PDBs
 Limiting number of parallel execution servers of PDBs
 Limiting memory usage of PDBs, including ensuring that the

minimum memory requirements of a PDB are met

 Limiting resource usage within a PDB for particular sessions
 Limiting PDB I/O generation

Key Resource Manager Terminologies
Before diving into the details of Resource Manager, let’s review some key
terminology.

Resource consumer group
Resource Manager will allocate resources to resource consumer groups, not
to individual sessions or processes. Resource consumer groups can be
thought of as sessions, grouped together, based on specific resource usage
requirements. Sessions are mapped to a consumer group based on rules
configured by the DBA and can be switched between different groups
automatically or manually.

Resource plan directive
Resource plan directives are used to associate resource consumer groups with
particular resource plans and to specify how resources are to be allocated to
the associated resource consumer group. A plan directive in a current active
resource plan may be associated with only one consumer group.

Resource plan
The resource plan is the top-level container for the directives. It is the
resource plan itself that is activated, which then enables the underlying
resource plan directives that specify how resources are allocated to the
individual consumer groups. There can be only one active resource plan at
any time in the database, but you can create many different resource plans
and switch between them as needed. This can be done via the scheduler or
manually using the ALTER SYSTEM commands.

This hierarchy of components is depicted in Figure 10-1.

FIGURE 10-1. A basic Resource Manager plan, directives, and consumer
groups

CDB resource plan
Think of this as the master or top-level plan created at the container database
(CDB) level, which specifies how resources (via the use of resource plan
directives) are allocated among PDBs within the CDB. A CDB resource plan
can have many directives, but each directive in an active plan may reference
only one PDB or PDB profile. Note also that two directives cannot both
reference the same PDB or PDB profile.

PDB resource plan
A PDB resource plan is the next step in terms of granularity, taking the
resources allocated by the CDB resource plan (to specific PDBs) and
determining how these resources are then distributed within the PDB among
its configured consumer groups.

Figure 10-2 provides a high-level representation of the relationship
between a CDB resource plan and PDB resource plans. It also indicates the
plan directives and consumer groups, which will be discussed in more detail
in the next section.

FIGURE 10-2. A CDB and PDB resource plan relationship

Subplan
A resource plan directive may reference another resource plan instead of a
resource consumer group, and this “stacked” component, or subplan,
provides additional flexibility to outwork fine-grained resource management
as required.

Shares
Resources on a system can be allocated proportionately using shares. For
example, a CDB containing four PDBs can allocate one share to each of three
PDBs and allocate two shares for the remaining PDB, denoting it has higher
priority.

PDB profiles

When working with large numbers of PDBs, you can also make use of PDB
profiles, which determine the share of system resources allocated to the PDBs
to which the profile applies. This includes CPU, memory, and total parallel
execution server allocations.

Resource Manager Requirements
Before Resource Manager can be used in a CDB, the CDB must have at least
one PDB. Resource Manager is configured via the
DBMS_RESOURCE_MANAGER package, and the system privilege
ADMINISTER_RESOURCE_MANAGER is required to administer it. The
ADMINISTER_RESOURCE_MANAGER system privilege is granted by
default to the DBA role with the ADMIN option.

This system privilege cannot be granted via regular SQL grant or revoke
statements, but must be done via the
DBMS_RESOURCE_MANAGER_PRIVS package using the following two
procedures:

 GRANT_SYSTEM_PRIVILEGE
 REVOKE_SYSTEM_PRIVILEGE

So, for example, if you want to grant user C##XADMIN this system
privilege, you would run the following command:

In this example, the parameter PRIVILEGE_NAME is specified even though this
is not strictly required, because the default value is
ADMINISTER_RESOURCE_MANAGER.

Resource Manager is configured and managed via the

DBMS_RESOURCE_MANAGER package, but to allow users to switch
consumer groups, they must be granted a specific system privilege using
procedures available in the DBMS_RESOURCE_MANAGER_PRIVS
package:

 GRANT_SWITCH_CONSUMER_GROUP

 REVOKE_SWITCH_CONSUMER_GROUP

Resource Manager Levels
Resource management in a CDB can quickly ramp up in complexity when
compared to managing a non-CDB. In a CDB, you have to take into account
multiple PDBs that may have differing workloads, and competition for
resources both within a PDB, as well as at the CDB level. When running
Resource Manager in a multitenant environment, resources can be managed
at two levels:

 CDB level You can manage resources within the CDB, catering for
the different PDB workloads and specifying how resources are
distributed among them. PDBs may have different priorities, and
resultant use limits can be imposed to distribute the total resources
available to the CDB accordingly. In most cases in which a CDB
contains multiple PDBs, it would be reasonable to assume that some
PDBs will have a higher priority than others. Resource Manager at a
CDB level helps to enforce and manage these priorities and
limitations.

 PDB level Drilling down, we can manage workloads and resource
usage within a given PDB. For example, let’s assume from a high-
level point of view that 50 percent of the CDB resources are allocated
to PDB1. Within PDB1, this 50 percent portion of the total CDB
resources can then be further divided up and portioned out between
the different consumer groups.

In the following sections, we will focus on CDB and PDB resource plans
in more detail, with examples of how these can be configured.

The CDB Resource Plan
A CDB resource plan is the top-level resource plan, configured for the CDB
itself. It directs the management of resources within the CDB, catering to
different PDB workloads and resource distribution between the PDBs. When
running a CDB with multiple PDBs, it is very likely that you will have to
allocate more resources to a specific PDB or PDB group. Or you may need to
distribute the system and CDB resources evenly to ensure that all PDBs get
sufficient resources, and that no PDBs are being starved of resources. In
either case, the CDB resource plan is used to map such allocations
appropriately.

Resource Allocation and Utilization
Limits
Using Resource Manager, you can prioritize resource usage among PDBs
with share values. The higher the share value allocated, the higher the
priority, which means there is a greater likelihood of obtaining resources
when resource contention is encountered. In the same way that resource share
values are implemented for individual PDBs, PDB profiles can be applied to
a set of PDBs. Figure 10-3 illustrates the basic concept of using shares. In
this example, we have a CDB resource plan with two resource plan directives
specified, with a total of four shares; one share is assigned to PDB1 and three
shares to PDB2. In the event of resource contention, PDB1 will be
guaranteed at least one quarter of the resources available, and PDB2 will get
three quarters.

FIGURE 10-3. Using shares in a CDB resource plan directive

NOTE
If there is no current resource contention, either PDB1 or PDB2 can
have a larger share of the resources than what they have been
assigned in the plan directive.

In addition to using shares as a method of prioritizing resources, you can
also set utilization limits for PDBs and PDB profiles, which are specified as a
percentage. If not specified, the value is 100, which indicates that the
associated PDB or PDBs included in a PDB profile can potentially use 100
percent of the CPU resources available in a CDB. The utilization limits can
be specified for CPU, memory, and parallel execution servers. The following
parameters can be set in a resource plan directive with respect to CPU and
parallel execution servers:

 utilization_limit
 parallel_server_limit

The utilization_limit parameter differs from using shares, because it
is specific to how much of the CPU resource may be used. For example, if
the utilization_limit for a particular PDB is specified as 100, it indicates
that the PDB may use up to 100 percent of the system CPU resources. If the
value is set to 50, it indicates that the PDB, if the system is under load, can
use up to 50 percent of the CPU resource. Shares are used to indicate which
PDBs have higher priority with regard to all resources, not just CPU
resource. Specifying a combination of options, such as shares,
utilization_limit, and parallel_server_limit, provides you with more
fine-grained control over how system resources are distributed.

In addition to utilization_limit and parallel_server_limit, two
new memory limits are introduced in Oracle Database 12c Release 2. Their
values are expressed as percentages in relation to the Program Global Area
(PGA), buffer cache, and shared pool sizes. Even though these two
parameters may be set, remember that shares are also considered to maintain
the fairness of resource allocation. The following two parameters can be
specified with regard to memory limits:

 memory_min The memory_min limit takes a default value of 0 if not set
explicitly. The goal is that each PDB should be allocated at least this
minimum if requested, for the PGA, buffer cache, and the shared pool.
If a PDB has reached the minimum, it will be prioritized for releasing
memory if needed. If it has not yet reached its minimum, it will be
preferred when requesting memory.

 memory_limit The memory_limit default value is 100. This is a hard
limit on the maximum memory a PDB can consume. If a PDB reaches
the maximum, it can allocate only memory that it has released itself,
while other PDBs that have not yet reached their limit (maximum)
may allocate memory that was freed from any PDB.

Figure 10-4 shows a high-level overview of how resource utilization
limits can be specified as part of the resource plan directives. In the example,
PDB2 does not have any utilization limits imposed (limits are specified as
100), but PDB1 limitations are specified up to only 40 percent of resources
(CPU, parallel execution servers, and memory).

FIGURE 10-4. High-level CDB resource plan directives with utilization
limits

Memory- and I/O-related parameters can also be set at the PDB level. For
more information, see the section “Manage PDB Memory and I/O via
Initialization Parameters” later in the chapter.

But what happens to PDBs that are not specified in any of the created
resource plan directives? The answer brings us to our next topic: default
directives.

Default and Autotask Directives
Up to this point, we have discussed CDB resource plans and the resource
plan directives that have been applied to specific PDBs. But what if you
create a new PDB, plug a new PDB into the CDB, or have already configured
PDBs that were not explicitly defined when creating directives? Default
resource plan directives are used for such scenarios, and they will have one

share assigned and resource limit parameters set to default values.
Alternatively, you can generate new directives for freshly created PDBs or
adjust the default PDB directives if you prefer.

NOTE
The directive for a PDB will be retained if the PDB is unplugged
from a CDB. If a directive is no longer needed, you will need to drop
the directive manually.

Should it be required, you can adjust the default directive using a
procedure inside the DMBS_RESOURCE_MANAGER package called
UPDATE_CDB_DEFAULT_DIRECTIVE. The following code block illustrates how
the default directive may be updated:

From this code block, we can see that the default directive for PDBs was
updated to two shares and a new utilization limit of 50 percent was specified.

Notice in the preceding code block that a pending area is created and
validated before being submitted. The pending area is a staging area where a
resource plan is created, updated, or deleted, without affecting currently
running applications. After changes are made to a pending area, it is validated
using the VALIDATE_PENDING_AREA procedure. Once the pending area is
validated, the SUBMIT_PENDING_AREA procedure is used to apply all pending
changes to the data dictionary. Once the submission is complete, the pending

area will be cleared.
The second default directive, the autotask directive, applies to automatic

maintenance tasks during the maintenance windows. The default allocation is
no shares (actually, –1), which means that the automated maintenance tasks
gets 20 percent of the system resources. The utilization limit is set to 90
percent and the parallel server limit is set to 100 percent. As with the default
directive for PDBs, you may also update the autotask directive, by using the
UPDATE_CDB_AUTOTASK_DIRECTIVE procedure in the
DBMS_RESOURCE_MANAGER package. In the following example, we
update the autotask directive‘s share value to 2:

Creating a CDB Resource Plan
Now that you understand CDB resource plans and their elements, we can
launch into a few examples to show you how to create these plans. There are
multiple ways to achieve this, but the most common method is to use SQL
commands via SQL*Plus and execute the required
DBMS_RESOURCE_MANAGER procedures. It is also possible to perform
some of these tasks via Enterprise Manager Cloud Control, Enterprise
Manager Database Express, or Oracle SQL Developer. In this section, we
will show you how to outwork these tasks using SQL*Plus and the
DBMS_RESOURCE_MANAGER package.

Example: Creating a CDB Resource Plan for Individual
PDBs

Before jumping into the commands, we first need to plan out what we want to
implement. A simple way of doing this is to create a table with all the
allocation options listed, or perhaps even a basic flow diagram. In the first
example, we will make use of the former to illustrate the CDB resource plan,
which will focus specifically on individual PDBs, without the use of PDB
profiles.

In this example, we will create a CDB resource plan and directives based
on the information listed in the following table. This example also includes
the Default and Autotask directives, and they will be modified from the
default values to those specified in the table.

The goal of this example is to show the commands needed to execute the
CDB resource plan, as per the values in the table. The steps follow:

1. Create the pending area:

2. Create the resource plan:

At this stage, even though we are going to perform the rest of the
configuration using SQL commands, it is also possible to do this via a
graphical interface. For example, Figure 10-5 illustrates how this can be done
using EM Database Express 12.2 when the CDB resource plan is created.
(Note also that the default directive can be updated at the CDB resource plan
creation time.)

FIGURE 10-5. Using EM Database Express 12.2 to create a CDB resource
plan

Now, returning to our command line example, the following steps will be
performed using SQL commands.

3. Create two plan directives for PDB1 and PDB2:

4. Update the default PDB directive:

5. Update the default autotask directive:

6. Validate the pending area:

7. Submit the pending area:

At this stage, the CDB resource plan and its directives have been created,
but we must keep in mind that it has not yet been enabled. We can review the
CDB resource plan directives by listing the information in

DBA_CDB_RSRC_PLAN_DIRECTIVES, as shown in Figure 10-6.

FIGURE 10-6. Review CDB resource plan directives

8. Enable the CDB resource plan:

Now that we have created a CDB resource plan called CDB_RPLAN,
we can enable it for use. This is achieved by executing the following
command:

Reviewing the database alert log and initialization parameters, we can see
that the change has taken effect. When reviewing EM Cloud Control, as
shown in Figure 10-7, the CDB resource plan displays with the status of
Active. (Note that EM Cloud Control 13c [13.1] does not show the memory
limit parameters.)

FIGURE 10-7. EM Cloud Control showing current active CDB resource
plan

NOTE
As mentioned, it is also possible to configure the Resource Manager
from Oracle SQL Developer.

In the preceding example, the different commands to be executed were
listed as discrete steps. However, instead of running each of these
individually, you can group them together in one code block and execute it as
a single unit. The following code block shows this, grouping all the
commands described in steps 1–7; once executed, you will have created the
CDB resource plan, ready to be activated when needed.

Modifying a CDB Resource Plan
The CDB resource plan can be updated using the following
DBMS_RESOURCE_MANAGER procedures:

 UPDATE_CDB_PLAN
 UPDATE_CDB_PLAN_DIRECTIVE

NOTE
The UPDATE_CDB_PLAN enables the update only of the comments
associated with the plan.

Updating a plan directive is similar to creating a new one, in that you
have to specify PLAN and PLUGGABLE_DATABASE (directive) values to indicate
which directive you would like to update. To modify the shares, comments,
or limits, your parameters are all prefixed with NEW. As such, there is no need
to specify the old and new values—only the new need to be specified. For
example, to update the directive for PDB1 in the previously created CDB
resource plan (CDB_RPLAN) and increase the utilization_limit from 70
to 80 percent, we can execute the following:

Executing this update will take effect immediately, even on an active
plan. It is also possible to add CDB resource plan directives at any time for a
PDB using the CREATE_CDB_PLAN_DIRECTIVE procedure.

Enabling or Removing a CDB Resource Plan
It is possible to have more than one CDB resource plan in a container

database, but only one can be active at any given point in time. The following
commands can be used to enable or, when no longer required, remove a CDB
resource plan.

Enable a CDB Resource Plan To enable a CDB resource plan, use the
following:

Or set resource_manager_plan to an empty value to disable it:

It is also possible to enable the CDB resource plan using a scheduler
window, because it is commonplace for the resource usage profile of an
environment to differ between day and night. The following example
demonstrates how to enable a resource plan based on a scheduler window.
The CDB resource plan name in this instance is DAYTIME_RPLAN:

Remove a CDB Resource Plan To remove a CDB resource plan, use the
following:

Removing a CDB Resource Plan Directive
When performing plug-in/unplug operations on PDBs, you may encounter a
requirement to remove CDB resource plan directives, although in some cases
you will want to keep directives, particularly when you know you are going
to plug in the PDB again. To remove a directive, the
DELETE_CDB_PLAN_DIRECTIVE procedure can be used. Following is a basic
example of this, in which we remove the CDB resource plan directive for the
PDB1 database:

Creating a CDB Resource Plan Using PDB Profiles
We’ve covered how to create CDB resource plans and directives associated
with individual PDBs, but what if you have a group of PDBs?

The steps to create a CDB resource plan using PDB profiles are very
similar to those that we have already detailed. In short, this method is
appropriate when you want to set specific directives for a resource plan that
applies to a number of PDBs—in this case, you can think of the PDBs as
being grouped together. One key step is required when following this
method: you have to set the PDB initialization parameter
DB_PERFORMANCE_PROFILE, which requires you to close and reopen the PDB
once it has been set. The following commands illustrate how this can be
done:

You can create a CDB resource plan using a PDB profile using the
CREATE_CDB_PROFILE_DIRECTIVE procedure of the
DBMS_RESOURCE_MANAGER package. The principles are the same as
in the earlier example, but instead of specifying the PLUGGABLE_DATABASES
parameter, you specify the PROFILE. Working from the earlier example,
instead of using the individual PDB1 and PDB2 when the directives are
created, we create two profiles: IMPORTANT_PDBS and
LOWPRIORITY_PDBS. Note that in this example, the default and autotask
directives are left as-is, using the default values, although you may update
them if required.

Once the CDB resource plan using PDB profiles has been created, you
can review the directive details by selecting from
DBA_CDB_RSRC_PLAN_DIRECTIVES. The following SQL query can be
used for this purpose; make sure you include the pluggable_database and
profile columns:

Removing a CDB Resource Plan Directive for a PDB Profile The same
procedure, DELETE_CDB_PLAN_DIRECTIVE, is used to remove a
directive for a specific PDB or a PDB profile. But instead of specifying the
pluggable_database parameter, the profile parameter should be used, with
the profile name being the assigned value. In this example we remove the
LOWPRIORITY_PDBS directive:

The PDB Resource Plan
When a CDB resource plan allocates resources to a PDB, the PDB resource
plan then goes one step further and distributes them based on its own
directives. Using this method gives you a more fine-grained level of resource
management control and flexibility.

Creating a PDB resource plan is similar to the method used for Resource
Manager with non-CDB configurations. The
DBMS_RESOURCE_MANAGER package is invoked for this purpose, and a
requirement for the following high-level steps to be performed:

 Creation of consumer groups (using CREATE_CONSUMER_GROUP)
 Setting the consumer group mapping (using
SET_CONSUMER_GROUP_MAPPING)

 Creation of a PDB resource plan (using CREATE_PLAN)
 Creation of a PDB resource plan directives (using
CREATE_PLAN_DIRECTIVE)

NOTE
When performing these tasks, you must be connected to the PDB for
which you are creating the PDB resource plan. To be clear, a PDB
resource plan will manage the workload and resource allocations
within a single PDB only.

You should be aware of a number of PDB resource plan restrictions,
including these:

 It cannot contain subplans.
 It can include a maximum of eight consumer groups.
 It cannot have a multiple-level scheduling policy.

In the next section, we will show you the steps to create a PDB resource
plan. The concepts are the same as for non-CDB environments, but for more
detail on consumer groups, plan directives, and mappings refer to the Oracle
Database 12c documentation.

Creating a PDB Resource Plan
To bring it all together, we’ll now work through how we can create a PDB
resource plan. Extending the CDB resource plan, CDB_RPLAN, created
earlier, in this example we will focus on a PDB called PDB2 and create a
basic PDB resource plan called PDB_RPLAN. A high-level view of this
configuration is shown in Figure 10-8.

FIGURE 10-8. Resource Manager: CDB and PDB resource plan overview

We can now map out the guaranteed and estimated resource allocations:

 For consumer group GROUP_A:

 Will be guaranteed 16 percent of the total resources: (4/5 shares)
80% × (1/5 shares) 20%

 Limited to 20 percent of the total resources: (80% × 20%)
 For consumer group GROUP_B:

 Will be guaranteed 48 percent of the total resources: (4/5 shares)
80% × (3/5 shares) 60%

 Limited to 80 percent of the total resources: (80% × 100%)
 For consumer group OTHER (OTHER_GROUPS):

 Will be guaranteed 16 percent of the total resources: (4/5 shares)
80% × (1/5 shares) 20%

 Limited to 32 percent of the total resources: (80% × 40%)

The code example that follows documents how this PDB resource plan
can be created. Note that it does not show how users are assigned to the
consumer groups; that is achieved with the
DBMS_RESOURCE_MANAGER_PRIVS package, and specifically the
GRANT_SWITCH_CONSUMER_GROUP procedure.

NOTE
If a non-CDB is plugged into a CDB as a PDB, it will function the

same as before, as long as there are no subplans, all resource
allocations are at one level (level 1), and the consumer groups total
does not exceed eight. If there are any violations, or any of these
three mentioned restrictions exist, the plan will be converted and its
status will be updated to LEGACY. It is recommended that
converted plans with the status of LEGACY be reviewed thoroughly,
because they may behave differently than expected.

Enable or Disable a PDB Resource
Plan
To enable or disable a PDB resource plan, you update the initialization
parameter RESOURCE_MANAGER_PLAN for the specified PDB. This can be done
by executing the alter system command while the current container is set to
the PDB whose plan you want to update (enable or disable). As with the CDB
resource plan, to disable the PDB resource plan, you set the
RESOURCE_MANAGER_PLAN parameter to an empty value. To enable or disable
the PDB resource plan—PDB_RPLAN for PDB1 in the following example—
you use the following commands:

Use this to disable the plan:

Removing a PDB Resource Plan
To remove a PDB resource plan, use the DELETE_PLAN procedure in the
DBMS_RESOURCE_MANAGER package. So, to remove the PDB resource

plan created in the preceding example, PDB_RPLAN, execute the following
from PDB1:

Manage PDB Memory and I/O via
Initialization Parameters
You might have noticed that in Oracle Database 12c, Automatic Shared
Memory Management (ASMM) is preferred over the use of Automatic
Memory Management (AMM). There are a number of reasons for this, which
are beyond the scope of this book, but it is recommended that you review the
method you are using. If you are unfamiliar with HugePages, consult Oracle
Support Note 361468.1. This functionality can have a significant impact on
an environment and may assist in more effective memory management and
usage.

As mentioned earlier in the chapter, one of the new features introduced in
Oracle Database 12c Release 2 is the option to specify memory limits as part
of the CDB resource plan directives. The two parameters mentioned
previously are MEMORY_MIN and MEMORY_LIMIT, but it does not stop there; you
can also control memory allocations for PDBs by using initialization
parameters.

PDB Memory Allocations
You can set a number of initialization parameters at the PDB level, including
some specifically related to memory. Do take caution when setting these
values, however, because you need to ensure that you have sufficient memory
allocated for the CDB and the rest of the PDBs contained within it. The
following parameters can be configured:

 DB_CACHE_SIZE Minimum guaranteed buffer cache for the PDB.
 SHARED_POOL_SIZE Minimum shared pool size for the PDB. If not set

at the PDB level, there is no limit to the amount of shared pool it can
use (though it is limited to the CDB’s shared pool size).

 PGA_AGGREGATE_TARGET Maximum PGA size for the PDB.
 SGA_MIN_SIZE Minimum SGA size for the PDB. This new parameter

introduced in 12.2 applies to PDBs only. If this is set on a CDB level
it will be ignored for the CDB but will be inherited by all PDBs in the
CDB. It is not recommended to set the total sum of SGA_MIN_SIZE for
all PDBs higher than 50 percent of the CDB SGA size.

 SGA_TARGET Maximum SGA size for the PDB.

These parameters can be set for a specific PDB by having that PDB set as
the current container, prior to running the following ALTER SYSTEM
commands:

Limit PDB I/O
I/O can also be limited for PDBs in a similar way to how memory is
controlled—at the PDB level using initialization parameters. There are two
key parameters to be aware of. Both have a value of 0 by default, which
actually disables any I/O limits being imposed on the PDB, and they are
specific to PDBs, meaning they cannot be set in a CDB:

 MAX_IOPS Specifies a limit of I/O operations per second in the PDB
 MAX_MBPS Limits the megabytes per second operations in a PDB

NOTE
The memory and I/O limit parameters can be set using the ALTER
SYSTEM command while connected to a PDB as the current
container.

Instance Caging
Resource Manager can be configured only for one instance on a server,
because it is not aware of what other instances on the same machine are
doing. To overcome this limitation, instance caging was introduced in Oracle
Database 11g (11.2). Prior to Oracle Database 12c, when multiple databases
(non-CDB) were consolidated onto one server, instance caging was used to
manage and distribute CPU resources among database instances. However,
with the introduction of multitenant, consolidation can be taken a step further,
in that these non-CDBs can be converted to PDBs. This opens the possibility
of administering CPU resource allocation inside the database instance using
Resource Manager.

Instance caging, together with Resource Manager, is an effective way to
manage multiple database instances on a single server.

Instance Caging to Resource Manager
As mentioned earlier in the chapter, prior to 12c, instance caging could be
used when consolidating non-CDB environments. With multitenant, this can
be further enhanced by converting the non-CDBs to PDBs and making use of
Resource Manager to distribute the resource between the PDBs. In this
example, we will show you how this can be done.

In the next example, two non-CDB databases are located on the same
server. They are CRMDEV and CRMREP. These databases use instance
caging, where CPU_COUNT is set to 3 on the CRMREP reporting database and
1 on the CRMDEV development. The two databases are converted from non-
CDB to PDBs (see Chapter 9 for more detail on how to convert a non-CDB
to a PDB) in a new container database called CDB3. In this example, we will

distribute the resource as shown in the following table. Notice that the default
directive is also listed for completeness: the default SHARE is 1 and the
UTILIZATION_LIMIT is 100.

We use a total of four shares, and we distribute this in the same way that
the CPU_COUNT was distributed. Using the UTILIZATION_LIMIT is not strictly
necessary (it enforces a hard limit). Figure 10-9 shows the resource plan to be
implemented.

FIGURE 10-9. Non-CDB instance caging to CDB resource plan

The following code example can be used to create a resource plan called
CRM_RPLAN for container database CDB3 running two PDBs. The code
block is executed while connected to the CDB$ROOT:

Monitoring Resource Manager
Monitoring Resource Manager can be challenging. Luckily, there are a
number of ways to extract information with regard to how resources are used
and distributed in the database. The following options are available to help
you in this area:

 Oracle Enterprise Manager – Database Express 12c (EM Database
Express 12c)

 Oracle Enterprise Manager Cloud Control (EM Cloud Control)
 Oracle SQL Developer
 SQL commands via SQL*Plus

Yes, SQL commands via SQL*Plus is included. At the end of the day, the
other tools are running SQL statements to extract the required information

required and then display it in a nicely formatted manner. Running SQL
scripts might be a bit daunting for some, but once you build up a number of
monitoring scripts to review your implementation of Resource Manager, you
will find it is a quick and easy way to get an overview of the current status.

Viewing the Resource Plan and Plan
Directives
The fastest ways to get information about the CDB resource plan and plan
directives are to use the following views while connected to the
CDB$ROOT:

 DBA_CDB_RSRC_PLANS
 DBA_CDB_RSRC_PLAN_DIRECTIVES

It is possible to view the information from EM Cloud Control or even
EM Database Express, as shown in Figure 10-10, for example.

FIGURE 10-10. Monitoring using Oracle EM Database Express

Monitoring PDBs Managed by
Resource Manager
For monitoring, nothing beats a good graphical representation of statistics.
Using EM Cloud Control or EM Database Express is highly recommended.
Figure 10-11 is a perfect example of how EM Database Express can be used
to get an overview of resource usage quickly.

FIGURE 10-11. Monitoring using Oracle EM Database Express 12.1

It is also possible to make use of the dynamic performance views to
monitor the results of a Resource Manager implementation. The following
views can be used:

V$RSRCPDBMETRIC Current statistics for the last minute are shown per
PDB. One record is displayed per PDB, including one row for the
CDB$ROOT. Note that this view is available only from Oracle
Database 12c Release 2.

V$RSRCPDBMETRIC_HISTORY Statistics for the last 60 minutes are
displayed per PDB (including the CDB$ROOT).

Summary
At the core of multitenant are consolidation, easy provisioning, and more
effective use of resources. Without Resource Manager, we might end up with
an implementation where resources are not distributed evenly or available
where needed, where certain applications experience bad performance
because of resource starvation. It might sound easy, but careful planning and
ongoing monitoring is highly recommended. Workloads change, and it is the
job of the DBA to ensure Resource Manager is configured and updated when
and as needed. It is recommended to start with a less complex configuration,
monitor it over a period of time, and adjust it as needed. Having multiple
resource plans on a CDB and PDB level is acceptable, and with the use of
scheduled windows, you can enable and disable these plans as required.

This brings us to other interesting subjects: Data Guard, the sharing of
data between PDBs, and then, last but not least, moving of data using logical
replication. These might seem unrelated to resource management, but if you
look a bit closer, you will realize that a standby database can be used to
offload certain application operations, especially when Active Data Guard is
in play. The end result may free up valuable resources on your primary
system and help you get more value out of your disaster recovery site.

A

CHAPTER
11

Data Guard

n old adage says that a DBA can get many things wrong but must
never fail in one single competency: database recovery. It holds that
if there is a way to restore the database to the time before the error

happened, then any error is potentially reversible. This saying was coined
many years ago, and the boom in overall database sizes and increased
dependence of modern organizations on databases as foundational to their
business operations have made it all the more true!

Over time, one additional requirement has emerged—we need fast
database recovery. Restoring a multi-terabyte database from tapes is not
something the business wants to wait for. This does not mean, however, that
the good-old tape backup is a relic of a bygone era; in fact, it is still a
necessary part of a sound backup plan, and we covered it in detail in Chapter
7. It just happens to be the last line of defense, reserved for massive natural
disasters. In the milieu of day-to-day operations, littered with faulty disks,
human errors, server crashes, and building fires, we need a faster way to
recover.

Since 8i, Oracle Database has supported the standby database
functionality; improved and enhanced through the versions, it eventually
evolved into the Data Guard feature. Conceptually speaking, however, a
physical standby database is merely an exact copy of the production, or
primary, database. This copy, or standby, is kept constantly in recovery
mode, applying archived redo from the primary, in the same way that a media
recovery would happen.

This basic level of functionality was introduced in Oracle Database 8i,
and if the database is not running on Enterprise Edition, this is all that is

available. It is a proven and solid foundation but lacks facilities such as
automatic redo transfer and adequate monitoring. Fortunately, third-party
tools are available to help automate this process and manage these
environments, such as Dbvisit Standby.

With an Oracle Database Enterprise Edition, the full Data Guard
functionality is available, which includes, at the very least, automatic redo
transfer, the ability to apply online redo as it is shipped, the availability of the
Data Guard broker and Data Guard command line interface (DGMGRL), and
the administration options included in Cloud Control and Enterprise Manager
Express. In this chapter, we will cover the Enterprise Edition functionality;
after all, only EE supports the multitenant option.

Data Guard supports multitenant databases, and most of the management
is identical to that of a non-container database (non-CDB). In this chapter, we
walk through a simple setup of a physical standby database and will then look
at some of the differences that multitenant brings.

Active Data Guard Option
With the standard physical standby functionality, the standby database runs in
recovery mode and is unavailable for any end user operations. However, the
Active Data Guard option enables the database to be opened read-only while
the recovery occurs, simultaneously, in the background, enabling users to
utilize the hardware and licenses dedicated to the standby database to support
various loads such as reporting or local caches.

CAUTION
There is no direct initialization parameter or setting that we can use
to enable or disable Active Data Guard. It is always available to be
used, irrespective of whether the server is licensed for it or not, and
the Oracle Database is overly “enthusiastic” about enabling this
option. So it falls to us, the DBA, as our responsibility to mitigate
against enabling it unintentionally and never open the database
when redo apply is active; this includes not starting the database

with startup, but always with startup mount instead. We might
well be wise to go the extra mile and create an automated task to
verify that the database is not opened with redo apply active.

We can, however, consider using the undocumented (and thus
unsupported parameter) _query_on_physical=no to prevent from using
the Active Data Guard option. Our hope is that Oracle will eventually
make the parameter documented and supported.

All of this is true for any Oracle 11g or 12c database, whether multitenant
is in use or not. We’ll see later in this chapter the impact of Active Data
Guard on multitenant when we discuss the various scenarios for creating,
copying, and moving pluggable databases (PDBs) and how they affect the
standby.

Creating a Physical Standby
As mentioned, a standby database is essentially an identical binary copy of
the source database, with some configuration differences and perhaps only a
subset of the source data. As such, it’s essentially a backup, so using backups
and backup tools to create it is an obvious choice. From the command line,
this means Recovery Manager (RMAN), and in terms of GUI options, it
means Oracle’s Cloud Control, which, incidentally, also uses RMAN in the
background.

Over the course of the database versions, this process has been
streamlined and enhanced, and nowadays very few steps are necessary.
Oracle can help us generate the required configuration files, and it can create
the standby both from an existing backup and from a running database.

After the standby is created, the next steps are to set up the Data Guard
configuration, set the desired level of protection, and monitor the
configuration. Again, both command line (DGMGRL) and Cloud Control
options are available for this purpose.

In this chapter, we go through a basic scenario, focusing on differences
brought by the multitenant database.

Duplicate with RMAN

As creating a standby database is a fundamental step in a Data Guard setup, it
is obviously described in depth in the Data Guard Concepts and
Administration part of the Oracle Database documentation. However, for
whatever reason, for a long time this information has been split between two
locations: one regular chapter that describes the process in quite vague terms,
and an appendix (Appendix E) detailing the RMAN-focused steps. In both
places, Data Guard Broker is not mentioned, but it is covered in another book
in the Oracle Database documentation, Data Guard Broker. This is quite
unfortunate, because the easiest way to create a nicely working Data Guard
configuration is to combine these three pieces. Multitenant brings yet another
element and an additional set of documentation to consider, but we hope this
chapter will serve to orient the reader.

NOTE
For the examples listed in this chapter, the current database is
called USPROD and the standby is NZPROD. The source database
is already in ARCHIVELOG mode, force logging is set, and
STANDBY_FILE_MANAGEMENT is set to AUTO. The servers are two
distinct machines, and the databases will be placed in the same
locations on both of them.

Set Up Static Network Services
The first step is to configure static service definitions for both the primary
and standby container databases. There is a single purpose in this: to enable
the Data Guard console to start the database instances, as necessary, during
switchover and failover operations.

We edit the listener.ora on the servers and add the static service
definition. Note the addition of _DGMGRL to the database unique name, so it
becomes, for example, USPROD_DGMGRL and NZPROD_DGMGRL.

Although not strictly necessary, but beneficial for administration
purposes, we also add an entry to /etc/oratab for the databases to be created:

Back Up the Source Database
If we want to create the standby database from backup, we must first back up
the database or ensure that a recent backup is available. Note that the backup
itself must be accessible from the standby server. How this is done depends
on the environment, and often the tape library will actually do this for us, or
we can mount the disks/SAN volumes manually as necessary.

The last option is, of course, to copy the backup files to the target server.
Although this option often doesn’t make much sense in a production
environment, because we can use duplication from an active primary directly,
it’s a good idea during testing and learning; any failures and retries during the
process will, therefore, not force the transfer of the entire database again and
again over the network.

Set Up the Network
During the setup and management of the configuration, the Data Guard
Broker establishes a connection to the primary and standby databases. We
therefore need to set up USPROD and NZPROD connection strings in the
tnsnames.ora on both servers. Also, when we do the initial duplication using
RMAN, it needs to connect to the not-yet-created NZPROD database, so a
connection to a statically defined service is required. And because we might
need such connections in the future, again for either of these possibilities, we
add connection strings for USPROD_DGMGRL and NZPROD_DGMGRL
services to tnsnames.ora, too, on both nodes.

Copy Password File and Create a Temporary

Parameter File
The standby needs an exact copy of the primary password file, so we need to
be aware that a newly created file will not work, even if the SYS password is
identical. Note also that the name is based on DB_UNIQUE_NAME; thus,
the new name of this file is orapwNZPROD.

For a backup-based process, we manually copy the password file from
the primary to the standby server. Although an active database–based
duplication process will perform this copy automatically, it still needs a
password file present to log in in the first place, so we still must provide it.

Next we need to create a temporary parameter file for NZPROD. The
duplication will copy over the correct primary (binary) SPFILE, but for now,
we just need the minimum of parameters to start up an instance. The only
required entry is the DB_NAME:

We could also add DB_DOMAIN if applicable for our environment. If
we are creating the standby on the same server as the primary—not a good
use case for a production database, but perhaps convenient for testing—we
need to specify DB_UNIQUE_NAME. This ensures that the new instance
name does not clash with the source, before RMAN has the chance to set
DB_UNIQUE_NAME in the SPFILE.

There are, in fact, two paths we can take with respect to generating the
SPFILE for the new database. The first is to create the PFILE from the source
database SPFILE (using the CREATE PFILE command) and then manually
change the file as necessary. The second is to have RMAN create a copy of
the SPFILE automatically, specifying the necessary changes in the duplicate
command.

The first option is more manual and time-consuming; however, during
the process we actually read the parameter file and have a chance to review
the settings. We can also use the parameter file to start the instance before the
duplication, and thus any incorrect paths or options are brought to our
attention immediately and can be amended.

On the other hand, we can let RMAN do the magic for us, but it is very
possible that some parameter will turn round and bite us, so to speak, during

the duplication process. This means that we will have to clean up any files
already created and restart the duplication.

One such example is LOCAL_LISTENER; this parameter might be set to a
value other than the LISTENER default, and in that case, we must either create
such a listener on the target and update tnsnames.ora as well, or adjust this to
the correct value in the RMAN duplicate command.

Also note that the target database will want some directories to be
precreated for the instance startup and for the duplication to succeed. Usually
this is the audit file directory, and, for non-OMF installations, also the paths
to the datafiles and online REDO:

NOTE
In a multitenant database, the datafiles are scattered among
multiple subdirectories, and we have to create all of them on the
target.

Run the Duplicate Process
Let’s run the duplication now. As mentioned, we are not changing the file
locations, so there is no need to specify DB_FILE_NAME_CONVERT and
PARAMETER_VALUE_CONVERT values, but we do have to specify
NOFILENAMECHECK.

This example uses the active database–based duplication functionality, in
which RMAN essentially performs an image COPY of the database datafiles.
Since the release of Oracle 12c, we can request that RMAN take a backup of
the source database during the DUPLICATE command and make use of these
backups.

And, of course, the least sophisticated means of getting started is simply
to use backups available to RMAN and created earlier. The major advantage
here is minimal impact on the primary database, because the new database’s
files are created from the backups. As for syntax, we simply omit the FROM
ACTIVE DATABASE clause.

Choosing a Subset of the Source Database
Ever since the standby database feature was made available, there has been
an option to have only a subset of the source database protected by the
standby. The idea is very simple: we can offline any file we don’t want to
have at the target and the recovery will ignore this.

NOTE
Subsetting is a feature used for specific use cases only. With a
regular standby, we want to protect the primary from disasters,
which implies that we want a full copy in this secondary location.
However, sometimes a PDB may only be temporary (similar to a

nologging table in a data load process), or perhaps we are just
using snapshot standby for testing, so we don’t need all of the PDBs
for the tests. In such cases, the subsetting option makes good sense.

Oracle Database 12c Multitenant provides a new syntax that achieves
similar results to tablespace offline, but with a superior usage. First of all, the
new syntax works at the PDB level, and, second, it has dedicated syntax for
recovering from such subsetting, should we later decide we actually want the
PDBs.

Unfortunately, one major aspect remains unchanged: although RMAN
has the [SKIP] TABLESPACE clause (and now with 12c it also has a [SKIP]
PLUGGABLE DATABASE, too) these are not valid for DUPLICATE FOR STANDBY,
though they are valid for the other DUPLICATE option that creates an
independent database copy. According to Oracle (MOS note 1174944.1), this
is an intentional limitation, because “a physical standby must match the
primary.”

In other words, Oracle forces us to create the standby as a full copy, and
only then can we remove the unnecessary pieces:

Following this command, the PDB is still known to the target database,
but its recovery flag is set to disabled, meaning that no redo is applied.

Thanks to all this metadata still present at the standby, it’s easy to add the
database back again. Later in this chapter, in the section “Enabling the PDB
Recovery,” you’ll learn more about this.

Start Data Guard Broker Processes and Set Up the
Configuration
Let’s now quickly go over the steps necessary to finish the standby creation.
The first step in properly establishing a Data Guard environment is to
configure the database to run the DMON processes that act as background
agents for the Data Guard configuration. To do so, on each of the databases,
we set the parameter as a common user:

Now with the brokers running, we can actually create a configuration
specifying the primary and the standby databases.

As a rule, when using DGMGRL, we always connect using a connection
string, never locally. Although most operations work fine with a local
connection (that is, by relying on ORACLE_SID of the CDB), switchovers
and failovers don’t. Note also that DGMGRL converts all identifiers to
lowercase by default, but we can use double quotes to retain case. However,
we would then have to double-quote them in all other places, as well.

Next we add the standby database:

Now comes the moment of truth: enabling the configuration. In this
process, Oracle sets the log shipping parameters and a few others, so this step
is anything but trivial and can fail for many different reasons. In such cases,
the error description is usually helpful, and we can also use the oerr utility or
look it up in the Error Messages documentation book.

Here we can see that NZPROD has more than one warning, so let’s
review the list by using show database:

To remove the ORA-16854 and ORA-16857 warnings, we can simply
issue a log switch on the primary to force a redo log to be shipped. This will
update the lag and satisfy Data Guard, and, of course, once we create the
standby redo logs in the next section, the changes will be applied in real time.

Verify the Configuration and Fill In the Missing Pieces
The next step is to fill in the missing pieces—enabling flashback and adding
standby redo logs. We can do this immediately, but let’s have a look at a new
diagnostic command first, which outlines the steps we need to perform.

In Oracle 12c, the VALIDATE DATABASE command has been introduced in
DGMGRL. Upon execution of the command, Oracle checks various settings,
along with the status of the database, and prints a comprehensive summary.
It’s useful during an initial setup, to remind us of steps we still have to do, as
well as during the course of normal processing.

There is still room for improvement of the VALIDATE command, and
perhaps this will come in future versions; nevertheless, it’s a good tool. From
its output, we can see it complains about standby redo logs and Flashback
Database not being enabled.

So let’s now create the standby redo logs. The steps are simple: use the
same size as for the redo logs and create one more than the number of online
redo log groups.

On the primary, add the standby logfiles and enable flashback. The naïve
approach is to add the standby redo logs with the minimal syntax required on
both source and target:

Unfortunately, in using the simple syntax for adding standby redo, the
logs were created but unassigned to any thread. This is not such an issue for
the standby itself, because the logs will be assigned to threads as required;
however, the VALIDATE command ignores such unassigned redo logs and
complains that there are insufficient logs for the thread(s).

The SQL command for creating the standby redo logs enables us to
specify the actual thread to assign. Using this, the assignment is preset at the
time of standby log creation, fulfilling the VALIDATE command criteria and, at
the same time, preventing any possible surprises should the autoallocation go
awry.

the VALIDATE command would be satisfied with the standby redo log
allocation:

We should also enable Flashback Database (see Chapter 8), so we don’t
need to rebuild the entire previous primary database on a failover.

Finally, we can verify the validity of the configuration with the following
command, although we may need to wait a minute or so for the broker
configuration to be updated:

We can also use a new option for the SHOW CONFIGURATION command to
understand what the configuration would look like if we were to switch the
database roles:

Test the Configuration
The last, and perhaps most important, step is to verify that the standby
database can be used in case of a disaster or to facilitate a planned
maintenance window.

NOTE
You should always start your experimentation with and learning of

this functionality on a test database. Disaster recovery is a business-
critical function and you need to become very familiar with all the
tasks it entails, and the administration of these environments, before
you depend on it for the protection of a production database.

A basic test simply consists of doing a switchover back and forth. This
verifies that the redo logs are being shipped and applied, and that DGMGRL
can actually connect to the databases even if they are down, using the
_DGMGRL static connection strings we created earlier.

If this is a nonproduction database, we can perform the test immediately;
if it’s a production database, we should schedule a maintenance window to
run the test. This is important as a core foundation of a thorough, planned
backup, recovery, and DR strategy is to verify periodically that backups can
be restored, and that applications and databases can be switched over and
successfully run, from the backup data center.

In our example, we want to verify in both directions, keeping the primary
in its original location once concluded, so we perform two switchovers:

TIP
To deepen your knowledge and familiarity with Data Guard, we
recommend doing more tests, although most of them are likely to be
limited to test databases. Give special attention to the multitenant
scenarios described in this chapter, which are also new to us and
quite often require manual intervention.

Further Configuration
Now it’s time to review additional settings available in Data Guard. We
might want to change the protection mode, set up an observer, and configure
fast start failover. Or perhaps we want to change the RMAN retention policy
to account for the standby when considering archive logs eligible for
deletion. These are but a few of the many useful options available to explore.
However, these are beyond the scope of this book, so we recommend again
reviewing the Data Guard documentation for this material.

Create a Standby with Cloud Control
Creation of the standby using RMAN is a well-tested and proven process, but
Enterprise Manager Cloud Control also has powerful capabilities, including a
nice step-by-step wizard. We can get to the wizard by choosing the
Availability menu (see Figure 11-1), in which both MAA Advisor and Add
Standby Database options have links to the wizard.

FIGURE 11-1. The database home page

The wizard covers both physical and logical standbys. It can also register
an existing standby—for example, one that we created manually using the
steps we outlined earlier, as shown in Figure 11-2.

FIGURE 11-2. The Add Standby Database wizard start page

A general grievance with Cloud Control is the time it takes EM
developers to catch up with the features that the database itself offers. One
such example is shown in Figure 11-3, where there is no option for using
backup set for the duplication from an active database.

FIGURE 11-3. Selecting a backup type page

Figure 11-4 shows various options for the backup, and as we have
selected active database duplication, there is really not much to configure. A
nice touch is that EM will create the standby redo logs for us.

FIGURE 11-4. Selecting backup options

In the end (Figure 11-5), a job is created that performs the actual work of
creating the standby database and setting up the Data Guard configuration,
including the broker. Note that both EM and DGMGRL use the same DG
Broker configuration, so it is possible to monitor and manage the
configuration using either tool.

FIGURE 11-5. Reviewing the job

After the standby is created, the Availability menu contains new options.
The Data Guard Administration page shown in Figure 11-6 displays a
overview of the configuration status.

FIGURE 11-6. The Data Guard status page

Managing a Physical Standby in a
Multitenant Environment
At the basic level, a container database is still a single database, and physical
standby works at the whole CDB level. That means that all the components
we were used to managing in a non-CDB environment still apply and are
done at the root level.

To begin with, this means that both DGMGRL and Cloud Control need to
connect to the root container and issue all the commands there. This also
includes parameters and options such as protection mode, standby redo logs,
transport mode, real-time apply, read-only open mode, observer, and observer
thresholds—and many others. It is a similar case with monitoring; the new
Oracle Database 12c VALIDATE command works at the root level, and the lag
is displayed for the CDB as whole.

However, the creation, movement, and disposal of PDBs does inject new
elements, and issues, into the world of the standby database. New PDBs, and
related tablespaces and datafiles, should “appear” on the standby side—but
how does this happen, and how can they get there?

Creating a New PDB on the Source
There are multiple ways in which we can create a new PDB on the source,
including from scratch, as well as by using the different clone options
discussed in Chapter 9.

Note that in all the examples, we use the (thoroughly recommended)
parameter, STANDBY_FILE_MANAGEMENT=AUTO. Setting this to MANUAL would
introduce extra steps in the resolutions, meaning that we would first need to
set the desired names for all the files involved, and that can get tedious.

Deciding Whether the PDB Should Be on the Standby
When a new PDB is created, we can specify whether we want it to be present
on the standby. In version 12.1.0.2, you didn’t have much of a choice,
because the PDB was available on all standbys or on none, but with Oracle
Database 12.2, we can now specify the standbys by name.

This standbys clause is valid for all the create pluggable database
varieties—from seed, plug-in, and clone.

From Seed
The basic database creation, or creation of a fresh, empty PDB or application
in an application container, is from the seed PDB or application container
seed PDB. In this case, the standby database will create the PDB, too, as it
has the seed readily available.

Local Clone
A local clone, or a clone from the same PDB, copies files from an existing
PDB into a new one that is part of the same CDB. The standby databases can
perform a similar operation; however, this feature requires Active Data Guard
to be enabled at the time.

If Active Data Guard is not in use, the standby will stop applying the redo
and wait for a resolution:

At this time, we have to decide whether or not to include the database in
the standby. If not, we can simply issue the following:

Of course, if we don’t want to have the PDB at the standby, its easier to
specify that directly in the statement creating the PDB, as shown in the
previous section. However, if we decide that we want to include the PDB, we
need to provide the missing files. Provided that we still have available a
consistent version of the files (the clone was from a closed PDB and the PDB
is still closed), it is sufficient to copy them to the expected path and restart the
recovery (that is, alter database recover managed standby database
disconnect from session). For other cases, see the section “Enabling the
PDB Recovery” later in this chapter.

Note that if working with a clone from a closed PDB, and the filenames
on standby are known in advance (for example, they don’t use OMF, which
includes GUID, which is unknown before the clone happens), then the easiest
way is to copy the files beforehand. Doing so means that the redo apply
won’t even have to stop.

Remote Clone
The remote clone option is, in fact, very similar to a local one. In this case,
Active Data Guard does not have access to the source files and thus it cannot
perform the copy automatically. All the other options are valid here, though,
including both skipping the PDB as well as providing the files to the standby.

Plug-in
For a plug-in operation, we have the files on hand before the operation, so it
is easy to copy them to the standby and place them in the correct location. If
we plug in a PDB archive, we must unpack the files manually on the standby.
The documentation gives the impression that making such a copy beforehand
is always enough.

Although this operation works for basic scenarios, in real life, we may
encounter additional complexity, including various situations in which the
datafiles are modified during the plug-in, such as when the database is
plugged in as a clone. In such cases, the standby will reject the files, meaning
that we will have to copy the files again from the source, after the plug-in has

occurred.

Proxy, Relocate
All the other clone operations are variations of the basic cloning option and
must be treated as such—that is, copy the files after the operation is done, or
use RMAN to add the PDB back.

Removing PDB from Source
Obviously, sometimes we want to get rid of a PDB, too. As removing does
not need any new datafiles to be created, it is generally an easier task to do on
with a standby database in place.

And let’s look at how a rename happens, too.

Drop
The DROP PLUGGABLE DATABASE command affects all configured standby
databases, meaning that the specified PDB will be dropped from all of them.

For this command to succeed, the PDB must be closed on all standbys.
This obviously applies only to Active Data Guard configurations, as
otherwise none of the PDBs can be open. If they are not closed, the redo
apply stops and must be restarted again after the PDB is closed before
proceeding.

Unplug
An unplug operation on a primary is also honored by all standbys. On the
standbys, there is no XML or PDB archive created; instead, the PDB is
simply marked as UNPLUGGED. As with the drop operation, the PDB must
be closed on all the standbys for this to succeed.

Rename
A rename of PDB is, again, honored by all standbys. The operation requires
the source to be in open restricted mode and closed on the standbys.

Changing the Subset
We can also change the list of included PDBs later on the fly. Let’s see how
to handle these scenarios.

Remove an Existing PDB
The standby database must be open in order to be modified. Furthermore, the
actual statement must be run with the selected PDB:

In this example, the alert log confirms that the datafiles have just been
taken offline:

After this, no redo is applied to the PDB, and the PDB is no longer usable.
The pre-12c method would be to alter the datafiles offline. This is, of

course, more cumbersome and does not set the recovery column of v$pdbs.
However, it’s the only option in version 12.1.0.1, and more importantly, it’s
still a valid way to remove only selected tablespaces from the standby.

Once these commands have been run, we can delete the physical files
because they are no longer needed if the removal is a permanent one.

Enabling the PDB Recovery
There are multiple reasons why we might want to have a PDB made available
again on the standby—the most important being in those instances where the
database never made it to the standby in the first place, such as during remote
cloning. Other cases include various testing scenarios, human errors, and
many others that only the real-world experience of a DBA will reveal.

If the files are still present on the standby, we can try enabling the
recovery:

Oracle will attempt to recover the database using the redo available on
the standby. Note that this command requires redo apply to be stopped and
might also necessitate a restart of the standby to mount mode. If this fails or
the files are not available, we can use RMAN to restore the files to the
standby.

First of all, we need to determine whether Oracle knows where the
missing files should be located. In some cases, such as with the STANDBYS
clause, Oracle generates a name such as UNNAMED00178. In others, it
carries over the name from the source, modifying it according to
DB_FILE_NAME_CONVERT settings if those are configured. These new names
are listed in the alert.log as well in v$datafile.

Or

For the next step, we must decide whether we want RMAN to access the
primary to retrieve the datafiles, or whether we want to use backups. In the
latter case, these must be accessible from the standby. Recovery catalog, or
simply the catalog command in RMAN, can be a great help here.

If the database knows the target filenames and we are happy with these,
we can issue the restore command:

Or copy from the primary:

If we want new filenames, we have to detail them. Note also that we can
specify NEW to let the standby generate OMF filenames, as an alternative:

This second example uses OMF:

Now we can enable the recovery and restart the redo apply.

Cloud Control
Unfortunately, PDB management in EM has no provision for standby
databases. It does not offer to specify the STANDBYS clause and is not helpful
in the resolution of any issues.

The Data Guard administration page shown in Figure 11-7 displays the
status after a clone, and we now have to resolve the situation manually, with
little or no help from EM.

FIGURE 11-7. Standby redo apply failure after clone operation

Standby in the Cloud
As with RMAN backups, the cloud provides a cost-effective option for
disaster recovery. The reasons for using it for this purpose are even more
compelling than those for its use for primary production databases.

Two main points stand out: First, it’s much cheaper and easier to run a
standby in the cloud than to build a whole new data center—a backup site in
case of a disaster—that might not ever be fully used. Second, the cloud usage
charges are determined by allocated capacity, and a standby database, which
only applies redo changes, needs much less processing power than the
primary database. At the same time, if a switch to the cloud backup database
is required, cloud technology means that it is easy to scale up the capacity as
required.

Numerous cloud provider options are available, and many can run an
Oracle database. After all, it’s just an application running on a commodity
operating system, usually Windows or Linux on Intel.

Oracle Public Cloud provided by the Oracle Corporation, however,
promises tighter integration and added value, given that it’s the same
company behind this cloud as well as the database software. That is
particularly true in the case of the RMAN cloud backup, as the Public Cloud
provides a media management library for the cloud backup and direct
integration with RMAN.

The database part of the Oracle Public Cloud is a recently introduced
product and is thus evolving rapidly as an offering. As of the time of writing,
Oracle started proving a one-click creation of standby database. After
selecting Database as a Service (as shown in Figure 11-8), just select
“Standby Database with Data Guard” and you end up with two nodes,
primary and standby, instead of just one. The standby can be then managed
using the Cloud Service Console or the dbaascli utility.

FIGURE 11-8. The list of Database Offerings for Oracle Cloud

Or you can use the old and proven dgmgrl because it’s still just an
ordinary Data Guard physical standby. And you can even skip that magic
option and select a more hands-on approach, creating the standby as we
described in this chapter, giving you all the flexibility and choices.

You should be aware that the cloud virtual machine comes with a license
included in the price. For multitenant, we need to select at least the High
Performance Service, and for Active Data Guard, only the Extreme
Performance Service fits the requirement (this is true both for manually
created standby and for the automatically provisioned, too).

If we already back up our on-premise database to the cloud, we can use
these backups to create the standby. Again, the steps are identical to those
within a local environment: install the Oracle Database Cloud Backup
Module using opc_install.jar, and then instruct RMAN to use the library:

In RMAN, set SBT_LIBRARY to use this module, either in the run block,
before there is a control file available,

or permanently in the control file:

Again, the process is exactly the same when using RMAN on-premise,
backing up/restoring from the cloud. The notable difference is that, in this
case, the data remains in the cloud, so the restore is not limited by the
bandwidth of our Internet connection.

In summary, there is very little multitenant-specific functionality in terms
of cloud disaster recovery. We must carefully select the machine type to have
the multitenant option included in the license, and from there the further
handling of PDBs is similar to that for an on-premise standby database.

Summary
In this chapter, we covered one of the less glamorous, yet very important,
features of Oracle Database and the cornerstone of the Maximum Availability
Architecture: Data Guard.

You’ve seen that it is not difficult to create a standby database, although
working with one effectively requires experience that comes from trying
things over and over. We emphasized that the Oracle documentation related
to this is strewn across multiple locations. On the other hand, disaster
recovery is such a critical topic that digging, experimentation, and practice
are beneficial in the long run.

To conclude, multitenant itself does not change how a standby database
works; however, in enabling cloning and plug-in/unplug operations, such
features have the potential for major impact, and many of them break that

“setup standby once and then forget it” attitude we may have once held.

I

CHAPTER
12

Sharing Data Across PDBs

s a multitenant database one database, or is it many? This is a question
that runs like a silver thread throughout this entire book, and, as you have
seen so far, the answer is, “it depends.” For some operations, we need to

think of multitenant as a single database; for others, we have to think at the
pluggable database (PDB) level and treat each PDB independently.

In this chapter, we investigate how to access the data stored in one PDB
from data stored in another PDB, and we will show that, again, we can
address the problem from both of the angles described. Furthermore, we will
discuss how Oracle introduces a completely new point of view.

At a very basic level, on one hand, we can completely ignore all the new
multitenant features, treat all PDBs as completely separate databases, and, as
ordinary users, log into a PDB and create a database link to another database,
regardless of whether this is part of the same container database (CDB) or
not. Or we can tunnel through the wall constructed by Oracle between the
PDBs, asking for data from another PDB directly, although this can get very
complex and elaborate, as you will see. Let’s take a look at the various
options in detail.

Database Links
A database link is a tried-and-tested feature, proven over time, that has been
with us since Oracle Database 5.1. That’s 30 years! This is a proven solution,
one that DBAs and users are familiar with, and it is congruent with the Oracle
message that nothing changes for users when the multitenant architecture is

adopted.
Of course, there are some limitations on what type of operations are

possible over a database link, but even those are being addressed. For
example, Oracle Database 12.2 fills in one long-standing gap, which is
support for large object (LOB)–based datatypes.

In addition to the familiarity of this functionality, there is one more major
advantage, and this is the opacity of the link to the user. The user does not
need to know where the target PDB actually resides. So when a DBA moves
the PDB to a new CDB, only the resolution of the connection string has to
change, by editing tnsnames.ora, for example. Again, a database link behaves
in the same way as it always did, multitenant or not.

In a non-CDB, database links can be split into two basic categories: a
remote database link connecting to an external database, and a so-called
“loopback” database link connecting to the same database. We can think of
the loopback link as an aberrant case, but there are times when it has its place
—for example, when two applications are consolidated to the same database,
and a database link is required between them for use by the applications.
Oracle Database recognizes this special case and introduces some
optimizations, such as having only one single transaction on the database
shared by both ends of the link. And Oracle Database 12c promises even
more performance optimizations, as Oracle expects more links pointing back
to the same (container) database.

Multitenant also brings a new distinction to database links, in conjunction
with the remote/loopback connection, so that a database link can now connect
either to the root container or to a PDB. Note that there is no way to change
the current container of the remote end of a database link, because there is no
alter session set container for it.

Because of this, a root container database link is useful for administration
only. As you saw in Chapter 9, remote clones can use such a link, and we
don’t have to create a new one for every single PDB we want to clone. But
for accessing data in PDBs, we need to create links connecting directly to the
desired PDBs. Although some of the techniques described later in this
chapter make user data visible even in the root container, in some cases a
CDB link may make sense to access data, too.

As you can see in Figure 12-1, Enterprise Manager offers all the usual
options to create a database link. There is no special option to specify
whether the target is a PDB or a CDB, because this is implied by the Net

Service Name.

Figure 12-1. Creating a database link in Enterprise Manager Cloud Control

Sharing Common Read-Only Data
A special case of data sharing is sharing of the same read-only data by
multiple databases. For example, if we want to provide multiple development
databases and include large historical data—data that is only queried and no
longer modified—it would be ineffective to copy such data multiple times,
both in terms of the time taken to perform this operation and in respect to the
storage consumed. In a sense, this is a poor man’s solution to making
database cloning less storage demanding.

NOTE
Some of the options described here will also work with read/write
data, although the options’ usefulness shines in cases when the data
is seldom modified.

Transportable Tablespaces
In 8i, Oracle introduced the transportable tablespaces feature. Its prominent
use case is to copy data from a production online transaction-processing
database into a data warehouse, removing the need for import/export, or for
an alternative data extraction and load process. Instead, entire datafiles are
copied, with only the metadata imported. For the basic scenario, Enterprise
Manager has a nice step-by-step wizard that starts with the screen shown in
Figure 12-2.

Figure 12-2. Transportable tablespaces in Enterprise Manager Cloud
Control

First, we make the source tablespaces read-only and then export the
metadata. If our users and applications preclude us from setting the
tablespaces to read-only, we can use Recovery Manager (RMAN) to do this
export (using the TRANSPORT TABLESPACE command). There is no magic
technology used by RMAN; it simply does a partial restore into a new
database and runs the export there.

Next, we copy the datafiles to the target server and import the metadata
into the target database. This step also makes the datafiles part of the target
database.

At this point, the usual next step is to set the tablespaces to read/write and
let users modify them. However, this is not mandatory, as the data is already
accessible and the datafiles are still not modified. This means that we can also
import the same metadata and tablespaces into another database—one or
many more databases, as we wish.

It’s the DBA’s responsibility to ensure that none of the databases will
modify the tablespaces and that nobody opens them read/write. The databases
are oblivious to the fact that the file is used by other databases at the same
time, so it won’t prevent us from enacting such changes. However, they will
detect such modifications should they happen and will complain loudly.

Of course, because the files are not modified at all, it isn’t necessary for
us to copy them from the source database, and even the source database itself
can be one of the sharing databases. Whether we want to do this depends a lot
on our use case and environment. Such sharing is not appropriate on a
production database, which is probably on separate storage and should not
bear the penalty of I/O generated by test and development, but in other cases
it might be a very useful option.

Storage Snapshots and Copy on Write
A simple extension of the same idea is to leverage storage to provide copies
of the tablespaces. This enables us to have multiple copies of the same
tablespace, but as of different points in time, or even read/write copies. Of
course, this is then more of a “copy-provisioning” option than sharing, but it
still has its use cases. After all, when using such tablespaces to provision
read-only copies of a production database for testing, having the copy as of
multiple points in time is a very beneficial facility.

So when and where might we find use for tablespace copies? In some
cases, a test has to be done with multiple copies of the data, while in others
we can just build new test environments as we go and update data over time.

To achieve the former, we would create a database that is a copy of the
source database and run the transportable tablespace export from there. This
copy can be a Data Guard physical standby, making the task of keeping it up-
to-date very easy. Alternatively, we could make use of a simple restore and
incremental backups if we want to decouple the databases more.

Then, every time we want to make a new copy, we make the tablespace
read-only, run the export, and create a new file system snapshot. The clone
database can continue to receive redo or incremental backups, and the file
system has the copy of the tablespace for us to use. Thanks to the snapshot
and copy-on-write facilities, only blocks modified by the clone database after
the snapshot was created will take up any extra disk space.

Delphix
Another option is Delphix (www.delphix.com), which provides both fast and
cheap cloning as well as storage de-duplication. In this case, we might do
well to rethink our entire approach, because this tool excels in the
provisioning of entire databases for testing and development. This means that
the building of such databases is considerably faster, more flexible, and less
painful than we can achieve with a simplistic solution such as sharing one or
a few tablespaces.

Cross-PDB Views
As we discussed in previous chapters, Oracle introduced CDB_% dictionary
views that display information collected from all open PDBs. In version
12.1.0.1, Oracle used a trick with an internal function called CDB$VIEW to
achieve this. This was not documented, and some scenarios caused internal
Oracle errors instead of proper results or appropriate error messages.

Fortunately, that version is now a relic of the past, and as of version
12.1.0.2, Oracle Database switched to using the CONTAINERS() clause,
which is properly documented and supported.

Delving into this a little deeper, here’s the definition of CDB_USERS in
Oracle Database 12.1.0.2:

http://www.delphix.com

In other words, the DBA_USERS view is wrapped in the
CONTAINERS() clause and references one new column created by this
clause, con_id, obviously referencing the container ID of the PDB.

The CONTAINERS() clause causes Oracle to execute the same query on
each of the open PDBs, but skipping PDB$SEED. It is valid to query such a
view even from a PDB, but in that case only data for the current PDB is
returned.

Let’s have a look at the same view in Oracle Database 12.2.0.1:

You can see that Oracle started using a table alias (k) in the query. For
this particular view, it also added three new columns. What interests us here,
in particular, are the two new columns generated by the CONTAINERS()
clause: CON$NAME and CDB$NAME.

The first is the name of the PDB where the records come from,
essentially translating the con_id into the PDB name. The second new
column is the name of the CDB itself, and you will see later in this chapter
when this might be useful.

We already noted that querying from the PDB will show us data from the
PDB only, while querying from CDB$ROOT gives us data from all the PDBs

except the seed. If we run the query from an application container root, we
get data from the application root and all its application PDBs, except the
application seed.

Simple User Tables
Because the CONTAINERS() clause is documented and supported, Oracle
allows us to query our own user tables as well as build views on top of them,
aggregating data from multiple PDBs.

Simple Status Query
Let’s start with a simple example query, supposing that we want to monitor
multiple PDBs. For this, we will assume that each has a user table called
ERRORLOG, and we want to query for all error messages inserted there. We
are interested in only the single table, and we want to query across all the
PDBs.

First of all, we need a common user to query the data, as a local user
would always see data from its PDB only:

The ERORRLOG table must be present in all of the PDBs (actually, only
in those PDBs we want to query, as you’ll see later) and in the root, too, and
the Data Definition Language (DDL) of all these copies must match. Because
the table must also be in the root, we have to create it under a common user

schema, or we can create it under local users in the PDBs and let the common
user have views or synonyms. In these examples, we don’t use application
containers, so the common user is created in CDB$ROOT; this mandates that
the user’s name is prefixed by the COMMON_USER_PREFIX, which
defaults to c##.

We run this create DDL in the CDB, then in all the PDBs:

As simple test data, let’s insert one row in each of the PDBs:

Now we can query the data:

As noted, the DDL must match. If, for example, we generate a new PDB
and create the table differently, like this (same would happen if the table is
not there at all):

Oracle silently ignores this table:

However, there is some leeway for allowed differences. Oracle takes the
metadata from the table in the root, so if the PDB tables have extra columns,
that’s fine, because they will be ignored.

So, let’s fix the missing column and add one more:

Now the query from the root works again—ignoring the extra column:

Querying Only Some of the PDBs
Oracle runs the query only in the containers where it makes sense to do so.
So if we specify a condition such as con_id, to choose only some of the
PDBs, Oracle will look in these PDBs only:

And we can use CON$NAME, too:

For another, more sophisticated, approach to this problem, see the
“Container Map” section later in this chapter.

Query Hint
In some cases, we might want or need to add a hint to a query that uses the

CONTAINERS() clause. But if we put it in the usual syntax, it will apply only
to the last aggregation step, not to the queries that are run in each of the
PDBs.

Fortunately, Oracle introduced a way for us to “push down” such hints
into the queries. The CONTAINERS(DEFAULT_PDB_HINT=’… ’) syntax
specifies these hints:

Querying the Data from a PDB
As already noted, accessing the CONTAINERS() query from within a PDB
gives us data only for that particular PDB.

In the previous examples, we had a logging table, and the query collected
errors from all the PDBs. So what if one of the PDBs is a monitoring
application that actually needs to access and process all these error logs?

Well, the solution is trivial: we can just create a database link pointing to
the common user in the CDB, and query the data over the database link. We
can’t put the CONTAINERS() clause around a remote object, but we can work
around this simply by creating a view.

Consolidated Data
One of the use cases of multitenant that really fits its features and advantages,
and perhaps the one that Oracle had in mind when designing this feature, is
consolidation of instances of the same application. Imagine a service provider
that sells an SaaS application to its customers and needs multiple copies of
the same application running on the same hardware. Or perhaps a company
IT department provides the same application for multiple branches or
franchisees; the application is the same and the users need data separation,
but the head office wants to access the data from all of the PDBs at the same
time to run various reports. These types of companies can benefit from
consolidated access to their data.

In the pre-multitenant world, we could either do schema consolidation
and put all the users into the same database if the application supported such
an approach, or we could build one consolidated staging/data warehouse and
load the necessary data into it, and then run reports from there. However, as
you have seen in the previous section, multitenant enables us to access all the
PDBs at the same time and thus build queries that run consolidated reports on
the data directly (although with imposed limitations such as having the same
table names and structure). The approach described in the previous section
can achieve this, but it could be a bit cumbersome should we do it for more
than a handful of tables.

Oracle Database 12.2 unleashes a number of features that make this

consolidation a much more prominent citizen of the database ecosystem.
Oracle promotes application containers as one of the key pieces of the
solution for these scenarios, although many of the features don’t actually
require them. Still, if we find that working with consolidated PDB data is an
important piece in our application, it might be a good time to dig deeper into
the application containers and consider whether building the application
using them would be a good fit.

Linking Tables Across Containers
You have already seen in Chapter 1 how Oracle links the dictionary objects
between the CDB and the PDBs using metadata and object links. Oracle now
enables us to do the same with our objects and data—well, kind of.

This implies storing data in the root container, and Oracle is strict here in
that it does not want us to enter into the bad practice of creating user objects
in the CDB root. It thus mandates that we create an application container
instead and store the data in its container root.

So let’s create an application container with a couple of application PDBs
in it, with a common user. In this simple example, we won’t create an
application seed in the application container.

Metadata-Linked Objects As the application common user in the
application container root, we can now create a metadata-linked table. The
table definition, or metadata, is in the container root; the actual data segments
are private to each application PDB. The following illustration shows such
arrangement of data:

Note that we are modifying the application root, and Oracle requires us to
mark any such modifications as “application install,” to be able to replay the
changes in the containers.

As you can see, any objects and data created during the application install
are synchronized to the PDB from the application root. However, no changes
done after the install are reflected, and the rowid shows that these are really
distinct rows; the sync does a one-time copy, and from then on the rows are
not linked in any way.

However, there is some value to these oversimplified nonlinked tables.
Oracle knows which containers have this particular version installed and thus
contain the table; it does not complain that some of the containers don’t have
the table present yet, and we don’t need to limit the query manually on
con_id.

Extended Data Metadata-Linked Objects A special flavor of metadata-
linked objects is an extended data object. In this case, the data is stored in
both the application root (common data, visible by all PDBs) and in the
application PDBs (data private to each of the PDBs), as shown in the
following illustration:

The steps are similar to those in the previous example, with the notable
inclusion of the EXTENDED DATA clause in the DDL.

In this example, the application is already installed, thanks to the example
we ran in the previous section, and we now add a new table there in a patch:

We observe that the application PDB sees current values of objects in the
root, including any changes done out of the application action. (Note that we
can’t use ROWID in the query in a PDB, however, because it will fail with an
ORA error.) And it can also add new records, private to the application PDB:

However, we cannot modify records inherited from the root; an update
command does not see these rows, even if a select query at the same time
does.

Although the root can, of course, modify the row:

One caveat, as you have seen, is that each PDB shows its own copy of the
common rows, and the parallel slaves executing a CONTAINERS() query
across the PDBs do not remove these duplicates.

Data-Linked Objects An object-linked object exists in one place only: in the
application container root. We are not allowed to modify the data the PDBs.

As the next illustration reveals, this is really common data shared by all
PDBs, modified only during maintenance:

Or, looking at it from a completely different point of view, this could be
considered read-only data shared by all PDBs—very similar to that which
was achieved with transportable tablespaces.

The root container can modify these contents even if not in the special
application patch or upgrade mode:

Now let’s switch to the application PDB:

The application PDB cannot modify the table. There is really only one
copy of the data, the PDBs can access it read-only, seeing all changes done in
the CDB.

A minor limitation is that it is not possible to query rowid of the table
while in a PDB - such query fails with ORA-02031: no ROWID for fixed
tables or for external-organized tables.

Cross-PDB DML
In Oracle Database 12.2, and not limited to application containers, we can
actually issue DML on a table wrapped in the CONTAINERS() clause. In
other words, we can change data in multiple PDBs with a single operation,
from a single transaction.

We can even specify the con_id to limit the execution to selected PDBs.

Oracle introduces a new setting that we can use to specify which PDBs
should be affected by this DML. This way, we don’t have to specify the
con_id condition in each DML, which means we don’t have to modify the
scripts every time we want to run it on a different set of PDBs.

To get the current setting, we can look at DATABASE_PROPERTIES:

And we can change the values with this:

The pluggable keyword is to be used when we issue the statement in the
application root (which is a kind of PDB itself), although we omit the
keyword if we execute it in CDB$ROOT. As for the target specification, we
can use <a list of PDBs>, ALL, ALL EXCEPT <a list of PDBs>, or NONE.

Note that the default is NONE, which, contrary to its name, actually
contains all (application) containers, except the seed and root.

Containers Default

If we find that we are using the CONTAINERS() clause heavily, we might
realize it’s too much work, and too error-prone, to add the clause dutifully to
every reference for the tables we want to query this way. Or perhaps we want
to reuse existing code and queries and want to minimize the changes needed
to update the code to use the clause. Fortunately, Oracle had introduced a
new table setting, which, if enabled, will result in every query and DML on
that table or view being automatically wrapped in the CONTAINERS() clause.

The setting can be easily checked in the data dictionary:

Container Map
When we have multiple PDBs with the same tables but different data (such as
data for different customers or branches) and we run queries on this data, all
these PDBs are interrogated, unless we specify con_id in the where condition.

In a sense, this is a partitioning schema; data for a single customer or
branch resides in a single PDB only—it doesn’t overlap—and if we search
for a single branch, only one PDB will contain data for it, as shown in the
illustration:

Therefore, it stands to reason that Oracle should have a method for
selectively pruning these queries, like it does with ordinary partitions. Indeed,
Oracle now enables us to declare the mapping, such that the optimizer then
knows how to respond accordingly. This is called a container map. In it we
create a dummy table with no data, which describes just the partitioning
schema, with the requirement that the names of the partitions must match the
names of the PDBs.

So let’s create an example table in the CDB$ROOT and a few PDBs:

We can now check that there is a row in each of the containers:

Now let’s create the container map and set it. Note that the container map
is global for the root or application container root.

The last step is to enable the table(s) to declare that they should be
handled in this special way:

In this example, we used a list-partitioning schema, but Oracle also
allows RANGE and HASH. The inclusion of a HASH schema points to the
idea that dividing a large application database into PDBs may be done to split
the amount of data and user load, with no further attempt to determine the
allocation based on any human-defined condition; HASH would simply split
the data into PDBs of more or less the same size.

Location Independence
We have seen in Chapter 9 that it’s easy to copy and move PDBs from one
CDB to another. Usually we just update the Transparent Network Substrate
(TNS) connection string after the move to a different server, and the clients
will connect to the new location. We mentioned that Oracle can also create a
proxy PDB, and you might wonder whether a proxy PDB is really such a big
deal. The answer, once we begin working with consolidation queries, is a
resolute yes.

The CONTAINERS() clause can work on one CDB only; it cannot
reference remote PDBs, and there is no syntax to specify such PDBs or
database links. However, there is one notable exception: proxy PDB. From
the view of the queries, a proxy PDB is a pluggable database like any other,
sitting locally on the CDB. The queries are not aware that their requests are
actually passed on further, to a remote PDB. In other words, the
CONTAINERS() clause will gather data from both regular, local PDBs as well
as from proxy PDBs.

If we add the fact that the limit of PDBs in a single CDB has been raised
to 4096, we can now run queries across many, many PDBs, even if having so
many PDBs on a single machine would be practically untenable because of
resource requirements.

Cross-Database Replication
Another option for data sharing is to look at solutions that work across
databases. They also usually allow the target to be the same database as
source (have it loop back), or at least a different PDB than the source. We

discuss this in further detail in Chapter 13.

Summary
We have discovered that the gamut of the options for data sharing is vast. We
can stay entrenched in current thinking and use proven features, such as
database links or transportable tablespaces, or we can begin to rethink our
approach completely and build our applications on application containers,
shared objects, and container maps.

Oracle DBAs are typically conservative, so whether these ideas gain
significant traction within this community (let alone among users in general)
is yet to be seen apart from a few obvious types for whom these features of
multitenant specifically appeal, such as cloud and SaaS providers.

A

CHAPTER
13

Logical Replication

database, as the name implies, is a place to store data, but as DBAs,
we are often most interested in the physical properties and
implementation of the database. For example, we may want to create

a backup of the database, create a standby database, or maintain a specific file
of an unplugged, pluggable database (PDB). We know that if we understand
these mechanisms well, when required, we can create a one-to-one copy of
the database or restore the database to the exact same state as before—bit-for-
bit. This is a physical copy, as the physical structure of the database is
maintained. If we then keep this copy in sync with the source by continuously
recovering the archive logs, for example, we call it a physical replication.

Developers—and their applications—tend to view the database as tables,
rows, and columns, and should they want the data to appear somewhere else,
they copy these structures, and their contents, again. They are not concerned
with datafiles or archive logs, and as long as they see the same data
reproduced, they are happy. This is often referred to as a logical copy, as
only the logical structures, or data, are retained in the process. A logical
replication, then, keeps such a target in sync with the source via a
mechanism such as SQL statement replay.

Physical replication is more robust, because if our source and targets are
identical at the bit level, bit-for-bit, then we can be 100-percent sure that the
data is also identical. It follows then that in this context we also don’t need to
be nervous about different character sets, length semantics, or cross-version
feature support—or putting the data into a non-Oracle database.

The other approach, logical replication, offers a higher degree of

flexibility, however, and there are far fewer limitations as to where we can
put the data. We are interested in the changes made to the “source” data, and
so long as we get an initial copy of this data, followed by all subsequent
changes, we will have an identical copy at the target.

We can identify three major use cases in which the benefits of this
method outweigh the disadvantages of its complexity:

 We can enable databases with mismatched versions to be
paired up. In this way, we can keep a copy of the database in
another location, running on a different version and/or platform. A
common use case for this is migration, which enables us to perform
near-zero-time downtime upgrades or migrations. We create a copy in
a new database, keep it in sync, and then switch users over to this new
database.

 We can copy the data to a different database. This database
might be Oracle or some other RDBMS flavor, as required by the
application, and the data may be complete or perhaps just a subset.
This approach is commonly used to offload reporting from a source
database to a secondary, less critical, one or from Oracle to a database
such as MySQL, thereby saving on Oracle Database licensing costs.
We can also develop distributed applications based on such replication
configurations, giving each location its own copy of the data, which is
then synchronized with all the others.

 Once we work at the data level, we are not limited to
keeping the data as-is. For example, we can treat the changes as
a stream of events—in other words, see it as a continuous flow of
changes made to the tables. This can in turn feed stream-oriented
processing flows, using frameworks such as Apache Kafka, Apache
NiFi, or Apache Samza, or it can simply be written to data stores, such
as Hadoop, where it can be duly processed by custom logic. This
opens an additional dimension of data for analysis: evolution over
time. Analysts are often interested in how data has changed
chronologically. For example, they want to see how a customer has
added and removed items from a shopping cart before completing her
purchase. So even if a database retains only details of the final order—

the final state—the flow of changes leading up to that point is useful
as it depicts how the shopping cart contents changed during the
checkout process, which can give insight into customer behavior and
the website’s effectiveness.

NOTE
Active Data Guard also targets the simple report offloading use
case; it is, however, limited to read-only queries and cannot, for
example, add indexes, materialized views, or summary tables. It is
also limited to an Oracle Database Enterprise Edition as a target.
On the other hand, it retains the simpler and more robust physical
replication 100-percent copy method.

These use cases for logical replication are not exclusive to multitenant,
nor are they in fact even Oracle-specific. However, multitenant is a major
architectural change and not all logical replication features and products
support it.

Oracle LogMiner
Oracle LogMiner is not a replication solution per se; instead, it extracts
changes from the redo logs and displays them in the v$logmnr_contents
view.

Other replication products (unless they implement a trigger-based
approach) work on the same basis, collecting all the changes as they happen
in the redo stream. So it is interesting to play with LogMiner and observe
how database changes show up there, because it allows us to see and
understand the various challenges and requirements facing the logical
replication products. For example, changes are recorded row-by-row,
meaning that a large update changing 1000 rows shows as 1000 separate
update statements, each affecting exactly one row.

A number of third-party products actually make use of LogMiner,
through the exposed PL/SQL API and v$ view. This works fine for basic

operations, but it easily breaks for more complicated operations such as those
dealing with large objects (LOBs).

Other products implement their own version of the log miner, completely
independent of the Oracle code. These are much harder to implement than
using LogMiner, but they enable more flexibility, are not limited only to the
information that Oracle makes available in the v$ view, and are more
efficient since they avoid calls to the database. The older “classic” version of
the GoldenGate extract falls in this category.

Yet another approach is to use triggers, although this technique is less
favored, because it increases load on the source database and does not scale
well in terms of performance. From an administration point of view, it is also
harder to maintain when DDL changes happen.

Obsolete Features
The list of logical replication features and functionality provided by Oracle is
surprisingly long, although this has been extensively pruned since the
introduction of Oracle Database 12c. For the sake of completeness, let’s
quickly review features provided for logical replication in Oracle Database
11g, which were not updated to support PDBs.

Oracle CDC
Oracle Change Data Capture, or CDC, was a trigger- or redo log–based
logical replication mechanism that was introduced in Oracle Database 9i. It
provided a list of all changes, in the form of an event/log table stored in the
database itself. But, as was already announced with the earlier Oracle
Database 11gR2 release, Oracle CDC is no longer included in future versions
and has been omitted from 12c.

A number of third-party tools used Oracle CDC in the past as a quick
way to support Oracle as a source in logical replication, especially those sorts
of applications for which the Oracle Database was not the primary database
of interest.

Oracle Streams

Oracle Streams, introduced in Oracle 9iR2, is a redo log–based replication
mechanism, which means that it reads the changes recorded in redo logs,
instead of relying on changes captured by triggers defined on the table, thus
putting no additional load on the database as a result. It then sends the source
database changes, which have been harvested, downstream to a different
Oracle Database.

Although still available in 12c, Streams is now deprecated. However,
unlike Oracle CDC, which never gained significant popularity, Streams was
adopted by many DBAs and organizations, and thus Oracle has been slower
to retire this option.

Nevertheless, Oracle Streams doesn’t support any of the new features
introduced in Oracle Database 12c, which means that PDBs are not supported
by it and never will be.

Oracle Advanced Replication
Another casualty of the Oracle Database 12c “lay offs” was Advanced
Replication, which is a replication method based on updateable materialized
views. This feature was formally deprecated in Oracle Database 12.1.

Oracle GoldenGate
It is clear that Oracle regards Oracle GoldenGate as the future of its
replication offering. This is the product that is intended to solve all our
requirements for logical replication, and that’s why Oracle Streams, Oracle
CDC, and Advanced Replication are no longer available.

It is true that Oracle GoldenGate is a superior product in many respects,
because it is more robust, scales better, and supports databases in addition to
Oracle, as both source and targets. On the other hand, it is expensive, whereas
Streams and CDC were included for free with the Enterprise Edition. It also
lacks support for some Oracle features, but this has rapidly improved since it
was re-engineered to use elements of the Streams code for redo extraction.

Last but not least, it was created by a company that was later acquired by
Oracle, so the user interface is very different from what we were used to with
Streams and CDC. As a product, it is not particularly easy to learn or use,
although the new GoldenGate Management Studio GUI is a huge step

forward.

Multitenant Support in Oracle
GoldenGate
In GoldenGate, only the new, integrated extract supports multitenant
databases. The source extract process is defined at the CDB level and
connects to the database as a common user. It can extract data for one or
multiple PDBs.

On the target side, each replicat process connects to a single PDB. So if
we replicate multiple PDBs on the source, we have to use multiple replicat
processes on the target.

Let’s set up a simple replication for a multitenant database and examine
the differences that multitenant brings.

Topology in the Example
In this example configuration, the source database has multiple PDBs, but we
are interested only in PDB1 and PDB2. On the target database, we have
prepared PDBT1 and PDBT2 to hold the data, although there is, of course, no
need to have all the PDBs in the same target database, since each has its own
replicat process.

On PDB1 we will replicate tables from the HR sample schema to
PDBT1; on PDB2 we will replicate the SCOTT schema to PDBT2:

Source Database Setup
First of all, we have to tell the database that it’s OK to use features that
require a GoldenGate license, which assumes that we have actually purchased
this license. A parameter, enable_goldengate_replication, was added in
11.2.0.4, and GoldenGate checks that this is set, or otherwise errors out,
refusing to register the extract. The parameter also enables functionality such
as disabling triggers on the target during replication.

NOTE
In 11.2.0.3 and earlier, these features were free to use (included in
the database license), before Oracle decided to disallow other third-
party tools from using them, by virtue of requiring a GoldenGate
license to enable them.

Run this SQL as a common user:

Every Oracle GoldenGate replication needs a connection to the source
database—that is, to the CDB, to be more precise. For this we must grant a
couple of additional privileges:

Every logical replication also needs to have basic supplemental logging
enabled, because a row can be chained or migrated—that is, the database can
store a row in multiple pieces. Minimal supplemental logging adds
information that allows LogMiner, or the logical replication tools, to stitch
these pieces together, and this is set at the PDB level:

Table Supplemental Logging
Logical replication also needs supplemental logging on primary keys enabled
to ensure that primary key information is always written to the redo log. This
is necessary for every logical replication tool, because Oracle writes only
changed values to redo, by default. That is OK for recovery or physical
standbys, as they identify rows by rowid (data block and row position in the
block), but logical replication does not preserve rowids and thus needs a
primary key, or similar, to uniquely identify the row affected.

In our example, we want to replicate an entire schema, so we use
SCHEMATRANDATA to set it for all tables in the schema—it would be TRANDATA
if we wanted to set it for a table only. We do this through the GoldenGate
Software Command Interface (GGSCI), the command interface between
users and Oracle GoldenGate functional components.

Configure and Start Manager
The next step is simple: let GGSCI create all necessary directories and start
the manager processes.

First, the directories:

Next, we configure the manager parameter file:

Then, in the editor, we simply enter the following:

Back in GGSCI, we can now start the manager:

And we also need to repeat these steps for the target server.

Extract Configuration File
Now we configure the extract process to read from the source database redo:

In our example, we will specify only the basic settings:

Because this is not a GoldenGate handbook, we have simply referred to
the original product documentation for explanation on the settings as well as
the steps to encrypt the password. However, notice the second and the last
two lines, where you can see that the extract process connects to the container
database (CDB) as a common user. In addition, we specify the tables to be
replicated in a single configuration file, specifying the names with three parts
—PDB, schema, and table.

Now let’s register the extract process just defined and configure the
remote trail:

Set Up the Target Database
Let’s now move on to the target database. Unlike the extract, a replicat
process connects to one specific target PDB. We have two PDBs replicated,
so we have to create users in both of these databases. First of all, we must
enable the “magic parameter” as we did for the source database, as follows:

Configure Parameter Files for Replicat Processes
Now let’s configure two replicat processes—one for each PDB:

And here’s the second one:

Now we can register the replicat processes:

Initial Extract
As with every replication, we must provision the source data to the target to
create a baseline, so they match as of a specific starting point. Let’s set this
starting point to the current database system change number (SCN):

We use GoldenGate’s initial extract for the provisioning, which means
we ask GoldenGate to load the initial data as a set of inserts, obtained by a
select into the source database.

NOTE
We have manually created empty tables at the target databases
prior to this—for example, using metadata only Data Pump import.

Let’s use two extracts, as an example to demonstrate that we are not
limited to a single extract in a CDB:

And similarly, for the second extract:

We use the SCN in the predicate for the tables, effectively turning this

into a flashback query:

NOTE
The TABLE clause can also accept a VIEW. This does not matter for
regular extract processing, although a VIEW generates no redo, so
no changes will ever be captured. However, for an initial extract, in
which data is queried using a select, the data would be extracted,
and replicat would fail, because it can’t insert into that VIEW. If it
could, we would otherwise end up with primary key violations or
duplicate data in the underlying table.

Let’s configure the replicat processes now:

There is nothing special about the configuration in this file:

Again, the second file differs from the first only in the replicat and

filenames, as well as login and tables:

Finally, we can register the processes:

And then also on the target:

Run the Initial Extract
Now we run the provisioning load:

We verify that both ran successfully, and through to completion:

In the detailed report, which is too long to list here, we verify there were
no errors:

Obviously, we need to perform the same check for the three other
processes.

Start Extract and Replicats
Now, with the data loaded, we are at the place where can start the replication.
Note, however, that we could actually start the extract much sooner, because
only the replicats have to wait for all the data to be loaded:

We then start the replicats:

Finally, we check that the processes are up and running correctly:

Big Data Adapters
Oracle GoldenGate now supports various Big Data or event streaming
targets, and these adapters are available for Hadoop HDFS, HBase, Hive,
Flume, Kafka, and Spark. Collectively, this is marketed as Oracle
GoldenGate for Big Data. A complete example would span many pages, so
let’s succinctly summarize how to use these Big Data adapters.

On the source side, nothing really changes, and we still have to define an
extract process to get the data. For the target side, there is still a replicat
process, but it needs to be pointed to a Java class and parameter file.

The easiest way is to start with the example for Kafka (Apache Kafka is
fast, scalable, and durable publish-subscribe messaging, rethought as a
distributed commit log, and distributed by design) provided in
AdapterExamples/big-data/kafka directory in the Big Data adapters
installation. We won’t go into detail on Kafka here; we recommend that you
visit the Apache Kafka project web page for more details, documentation,
and use cases. Here, we set up a very basic example.

We can use the example replicat definition right away, just changing the
tables to be included in the replication:

The kafka.props file referenced here is where all the Kafka-specific
settings are stored. Again, we can start off with the supplied example,
although we will want to change at least the topic (stream of events
describing changes on a table; in this example we put all source tables to a
single event stream) and schema topic (event stream where replicat puts Avro
schemas for the replicated tables) names, and possibly expand the classpath
to include Avro libraries (if we go with the Avro format, as set in the
example file):

This configuration in turn references one more configuration file: the
description of the Kafka server we want to connect to. The only reference we
need to change in this custom_kafka_producer.properties file is the first line
—bootstrap servers (Kafka servers that provide information on the Kafka
cluster configuration; in the simple case of a standalone server, just specify
this server):

As discussed earlier, it is a simple process to register the replicat, as
follows:

There is much more to be configured and set up for various use cases; see
Oracle Golden Gate for Big Data documentation.

Oracle XStream
As we mentioned previously, Oracle GoldenGate now uses the integrated
extract. This code, which sits in the Oracle executable itself, is based on
LogMiner and Oracle Streams original code, further developed to satisfy the
needs of Oracle GoldenGate and to accommodate all the new features.

However, since the Oracle GoldenGate extract and the Oracle Database
executables are separate processes, Oracle had to introduce an API to enable
them to talk to each other.

Oracle decided to make this API public and called it XStream. This API
consists of PL/SQL packages and v$ views for management. For the actual
processing of changes, there are Oracle Call Interface functions for C, along
with a Java API. Logically, the API is split in two: one for data coming out of
the database (“extract” in GoldenGate, XStream Out) and one for data
coming into the database (“replicat” in GoldenGate, XStream In).

Oracle also decided that since all the code for GoldenGate for Oracle

source databases is contained within XStream, we need an Oracle
GoldenGate license to use it. This relegates the use of XStream to special use
cases that GoldenGate does not directly support, meaning that it is anything
but a “limited, but free” solution like the original Streams offering was.

NOTE
The XStream API is indeed an API, meaning it’s intended for
application programmers, not for database administrators. You
need to write a C or Java program to make use of it.

Logical Standby
In Chapter 11, we covered Oracle Data Guard physical standby, ignoring at
that time the fact that there is also another type available: the often forgotten
logical standby.

Conceptually, this is similar to Streams or GoldenGate, in that redo is
mined for changes, and these changes are then applied to the target using
SQL statements. This implies similar limitations to those for Streams and
GoldenGate, including limited datatype support and no duplicate rows in
tables. Unlike Streams, however, logical standby is not deprecated, and
unlike GoldenGate, it does not require any additional licensing. In reality,
though, even logical standby is destined to be replaced by GoldenGate—with
one notable use case exception, as you will see.

One special aspect of a logical standby to be aware of is that it is
instantiated from a physical standby—that is, its setup begins with the same
steps used for a physical standby, including the selection of PDBs to include
in the standby, and the same steps also apply for including PDBs created
later. In having been generated from a physical standby, it is always built at
the CDB level and starts out with all PDBs, with one notable exception:
application containers are skipped. Generally, we can’t convert a logical
standby back to a physical one, because the two are no longer one-to-one
copies of each other. However, in the special case of an upgrade (see the next
section), it is indeed possible.

This instantiation from a physical standby is both a curse and a blessing.
On the positive side of the ledger, it is very easy to do it right and to be 100-
percent sure that all the source data is initially copied correctly to the target.
On the other hand, though, it imposes the same restrictions that a physical
standby does: it requires the same Oracle versions (when the logical standby
is created) and platform compatibility.

Use in Upgrade
The unique feature of a logical standby, and the use case that has become its
point of difference, is its function in a rolling upgrade. In this scenario, a
logical standby is automatically converted from a physical standby. Oracle is
then upgraded on this logical standby and it becomes the new primary, and
then the other database in the configuration is upgraded. This makes the
upgrade much simpler than it would have been with GoldenGate—we don’t
need to rebuild any database after the upgrade is completed, because logical
standby can convert back to physical standby in this case.

Oracle Database 12.1 introduced the DBMS_ROLLING package that,
along with Active Data Guard, enables automation of such an upgrade
process and can be especially beneficial if there are multiple standby
databases in the configuration.

As for a multitenant database, not much is different, although in this
special case, application containers are supported. Note, however, that an
upgrade of an application container cannot happen at the same time a rolling
upgrade is performed, and vice versa.

To ensure that there is no data loss during this process, all PDBs must be
plugged in and opened when the transient logical standby becomes the new
primary.

Other Third-Party Options
As mentioned, other companies provide alternatives to Oracle GoldenGate. In
general, they lag behind Oracle GoldenGate in terms of features and
performance, but they provide competitive alternatives by majoring on ease-
of-use and price.

Dbvisit Replicate
Dbvisit Replicate, not to be confused with Dbvisit Standby (which is similar
to physical standby), is a logical replication tool that uses its own
implementation of a redo parsing engine. Only Oracle Database as source is
supported.

PDBs are supported. The mine process connects to a single PDB at the
source and replicates this sole PDB. Replication of multiple or all PDBs at
the same time using a single replication is not supported as of the time of
writing.

Although not as feature-rich as Oracle GoldenGate, Dbvisit Replicate’s
strength lies in its ease-of-use. As a point of comparison, the example we
went through earlier to configure GoldenGate requires significantly less
manual work. In fact, most of the steps are performed automatically by a
single script that the Replicate Setup Wizard creates, after asking a handful of
simple questions about your databases and the tables/schemas you want
replicated. Unfortunately, there is no GUI available at this point in time.

Replicate also supports Event Streaming mode, producing a stream of
changes, similar to the output Oracle CDC produced. Using this functionality,
or published APIs, it supports for example Apache Kafka and Apache NiFi
targets.

Dell SharePlex
Dell SharePlex, known as Quest SharePlex before Dell acquired Quest
Software, is another alternative to Oracle GoldenGate. Again, it is more cost-
effective than GoldenGate, but it also supports only the Oracle Database as a
source.

Since late 2014, SharePlex has supported PDBs, and each of the PDBs
requires its own configuration and capture process.

The configuration is text-based, but the SharePlex Manager does offer a
basic GUI for configuration and monitoring.

Summary
We have only briefly touched on the merits of logical replication. To be fair,

it is a topic that warrants a book in its own right, and indeed, there are already
multiple books on Oracle GoldenGate alone. With the advent of Big Data and
event streaming, these tools are even more important to consider in our
environments.

Oracle Multitenant is the direction that the Oracle Database is going in,
so all logical replication tools need to support it. Unfortunately, this has
become a stumbling block for many of the features we were familiar with
prior to 12c, and the Oracle-recommended replacement is an expensive one.

Index

Please note that index links point to page beginnings from the print edition.
Locations are approximate in e-readers, and you may need to page down one
or more times after clicking a link to get to the indexed material.

A

AaaS (Application as a Service), Oracle Database 12c, 5
ACFS (ASM Clustered File System), 241
Active Data Guard

automating upgrades, 363
changing UNDO mode, 223
cloning local PDB, 240
enabling read-only database in recovery, 291
physical replication 100-percent copy, 347
simple report offloading, 347

Add Standby Database wizard, Cloud Control, 304–305
administer key management

creating keystore, 160–161
creating master key, 162–163
opening keystore in TDE, 162

ADMINISTER_RESOURCE_MANAGER system privilege, 263
administration. See also DBA (database administrator)

creating CDB using DBCA GUI, 39
multitenant. See day-to-day management
root container database link only for, 321

Advanced Configuration, creating CDB with DBCA GUI, 41–42
AFTER CLONE trigger, 252–253
AFTER DB_ROLE_CHANGE trigger, CDB-only, 252
AFTER LOGON ON PLUGGABLE DATABASE, 26
AFTER SET CONTAINER ON PLUGGABLE DATABASE, 26

AFTER SET CONTAINER trigger, 26, 252
alert logs, 121–122, 184
ALL option, ALTER LOCKDOWN PROFILE, 156
ALTER DATABASE, modifying PDB, 98
ALTER LOCKDOWN PROFILE, 155–156
ALTER PLUGGABLE DATABASE CLOSE, 93–94, 96
ALTER PLUGGABLE DATABASE OPEN, 93–94, 96
ALTER PLUGGABLE DATABASE SAVE STATE, 95, 96
ALTER SESSION SET CONTAINER trigger, 23, 26, 252
ALTER SESSION SET CURRENT_SCHEMA, 23
ALTER SYSTEM

changing parameters in SPFILE, 113
disabling with lockdown profiles, 156–157
limiting PDB I/O parameter, 283
PDB memory allocation, 282
PDB SPFILE equivalent, 114
single-tenant security lockdown, 75–76

ALTER SYSTEM KILL SESSION, thread processes, 125
ALTER SYSTEM RESET, removing persistent setting for parameter, 116
ALTER SYSTEM SET

administer key management replacing, 161
CDB SPFILE, 114
lockdown profile, 157

ALTER USER

administering temporary tablespaces, 92
authorizing container access, 151

Amazon Web Services (AWS), back up to cloud, 195
AMM (Automatic Memory Management), 281
APEX (Oracle Application Express), 30–31, 107
application containers

considerations, 247
linking tables across, 330–338
prefix for, 80–83, 151

application metadata
separating system metadata from, 18–19
vs. system metadata, 13–14

application servers, Oracle Database 11g, 5
APPLICATION_USER_PREFIX, application containers, 151
APPOWNER, proxy users, 154
archive files, plug-in/unplug PDB, 238–239
archive log list, hot backups, 172
archive logs

backup schedule for, 183
in full CDB backups, 176
full CDB recovery with, 185
hot backups generating, 171–172
PDB backup restrictions, 183

ARCHIVELOG mode
cloning local PDB, 241–242
cloning remote PDB, 242
enabling FLASHBACK ON, 214
flashback logging, 215
hot backups, 171–172
hot cloning remote PDB, 241–242
modifying entire CDB, 90

arguments, creating PDB with catcon.pl, 68–69
AS APPLICATION CONTAINER clause

application containers, 80
CREATE PLUGGABLE DATABASE with, 57
linking tables across containers, 330

AS CLONE clause
CREATE PLUGGABLE DATABASE with, 57
deciding if PDB should be on standby, 310
plugin PDB as clone, 237–238

ASM (Automatic Storage Management)
creating CDB using DBCA GUI, 39

creating CDB using OMF, 44–45
Oracle Managed Files used with, 37
recommended for database files, 36

ASM Clustered File System (ACFS), 241
ASMM (Automatic Shared Memory Management), 281
atomicity of transactions, PITR of UNDO tablespace, 200
auditing of log in, as proxy user, 153–154
Automatic Memory Management (AMM), 281
Automatic Shared Memory Management (ASMM), 281
Automatic Workload Repository (AWR), collecting statistics, 31–32
autotask directive, CDB resource plan, 268, 270–273
auxiliary instance

PDBPITR in local UNDO mode, 212
point-in-time recovery, 205–206
restore/recover PDB with RMAN, 202–205

availability
multitenant option, 80
single-tenant consolidation, 76

Availability menu, creating standby in Cloud Control, 304–308
AWR (Automatic Workload Repository), collecting statistics, 31–32
AWS (Amazon Web Services), back up to cloud, 195

B

backup
of archive logs, 183
block corruption check, 193–194
CDB recovery and, 175–180
before CDB upgrade, 103–104
to cloud, 195–196
Cloud Control for, 194–195
creating physical standby for, 291–292
hot vs. cold, 170–172
overview of, 170

PDB, 175–176, 180–183
and recovery. See recovery
RMAN backup redundancy, 174
RMAN default configuration, 173–174
RMAN optimization, 189–193
of source to standby with RMAN, 293
SYSBACKUP for, 174–175

backup database commands, 173–174, 181
BACKUP OPTIMIZATION ON, consolidating single-tenant CDB, 77
BEFORE SET CONTAINER trigger, 26, 252
BEFORE UNPLUG trigger, 252–253
Big Data adapters, 359–361
BIGFILE/SMALLFILE datafile, 92, 98
block change tracking, RMAN, 191–192
block corruption checks, 193–194
BPU (Bundle Patch Update), 112

C

case-insensitivity, common user prefix, 151
case-sensitivity, DB_UNIQUE_NAME clause, 118
catalog command, PDB recovery on standby, 313
catalog options, creating CDB in SQL*Plus, 53
catcon.pl script

creating CDB in SQL*Plus, 50–51
creating PDB, 67–69
pre-upgrade check for CDB, 102
recompiling invalid objects for CDB, 55
running preupgrade script, 104–105

catctl.pl utility, upgrades, 105–106
catoctk.sql script, creating CDB, 53
catproc.sql script, creating CDB, 53
catupgrd.sql, upgrading CDB, 105–107
CDB backup and recovery

full backups, 176–178
overview of, 175–176
partial backups, 178–179
reporting using RMAN, 179–180
restore and recovery, 184–187

CDB (container database)
avoid putting all databases in same, 79–80
cloning local PDB, 240–241
connecting to containers, 23–26
creating common users for admin, 140–141
dictionary views, 26–27
dropping, 90
files common to all containers, 27–30
holding multiple pluggable databases, 14–16
identifying containers, 20–23
managing, 89–92
managing physical standby, 308–314
managing resources in Resource Manager, 264
modifying entire, 90–91
as multitenant database, 14
multitenant dictionaries and, 16–20
PDB level parameters vs., 113–118
recovery scenarios, 183–187
removing running database, 47
Resource Manager requirements, 263
single-tenant, 74–79
startup and shutdown, 90–91
unplugging PDB/plugging into different, 230–231
upgrades. See upgrades, CDB

CDB, creating
Oracle Managed Files and, 36–37
overview of, 36
using CREATE DATABASE or DBCA, 90
using DBCA CLI, 42–44

using DBCA GUI, 37–42
using one PDB (FS and non-OMF), 46–47
using SQL*Plus, 47–55
using two PDBs (ASM and OMF), 44–45

CDB resource plan, Resource Manager
creating, 269–273
creating with PDB profiles, 275–277
default and autotask directives, 267–268
defined, 262
enabling/removing, 274–275
managing, 273–274
overview of, 265
removing directive for, 275
removing directive for PDB profile, 277
resource allocation and utilization limits, 265–267
viewing, 285

CDB SPFILE, 114
CDB_PDB_HISTORY view, 97
CDB$ROOT

block change tracking, 191
changing UNDO mode, 211
common users, local users and, 140
complete recovery of, 185–186
connecting to CDB via, 89–90
creating CDB, 54, 90
creating common users, 144–146
creating database with local UNDO, 208
data links, 20
Data Recovery Advisor run only from, 193
dictionary views from, 17–18, 26–27
full CDB backup of, 176–177
full PDB backup of, 180–181
granting common privileges, 147–148
identifying containers, 22–23

metadata links, 18–19
modifying entire CDB, 90–91
modifying root container, 92
multitenant dictionaries and, 16–17
overview of, 15–16
partial backup details, 179–180
partial PDB backup from, 182
recompiling invalid objects, 55
recovering from lost datafile, 186
recovering from lost tablespace, 186
recovering PDB nonsystem datafile, 188
recovering PDB system datafile, 188
recovering PDB tablespace, 188–189
recovering PDB until time, 203–204
in Resource Manager, 284–285
restore points at CDB/PDB levels, 216–218
restricting access to container data, 151–153
results of querying from, 325, 328
specifying DATABASE for backups, 175
UNDO for all transactions in, 211

CDB_views, common users, 151
CDC (Change Data Capture), 348
changed blocks, incremental backups, 189–191
CLI (command-line interface)

creating CDB with DBCA, 42–44
creating PDB with DBCA, 65–66

CLONEDB initialization parameter, snapshots, 241
cloning

copying database by, 228
with Delphix, 324
non-CDB, 250–251
to Oracle Cloud in OEM, 251–252
overview of, 239–240
plug in a PDB as, 237–238

remote. See remote clone
with TDE, 164–165

close state, PDBs, 93–94
cloud

backup options for, 195–196
consolidating PDBs, 14–15
moving PDBs to, 251–252
Oracle Database 12c, 5
running standby in, 315–318

Cloud Control
backup options, 194–195
creating CDB resource plan, 271–273
creating database link, 321
creating PDB, 66–67
creating physical standby, 29s
creating standby, 304–308
monitoring PDBs managed by Resource Manager, 285
monitoring Resource Manager, 284
opening/closing PDBs, 95–96
setting up TDE, 161
transportable tablespaces, 322–323

Cloud Services, back up to Oracle, 195–196
cluster database, opening PDB in, 96
Codd’s rules, 11
cold (consistent) backups, 170–172, 185
columns, TDE encrypting all table, 163–164
command-line interface (CLI)

creating CDB with DBCA, 42–44
creating PDB with DBCA, 65–66

commands, pluggable databases accepting all, 15
COMMENT clause, for permanently changed parameters, 115
common roles, creating, 153
common users

avoid mixing local users in same namespace as, 144
conflict resolution between local and, 148–150
connecting through local proxy user to, 153–154
creating with CONTAINER=ALL option, 144–146
granting common privileges to, 147–148
granting local privileges to, 146–147
keeping conflict resolution clear and simple, 150–151
querying V$ views for information, 151
restricting access to container data, 151–153
stored in every single PDB, 140–141

COMMON_USER_PREFIX

for all common user names, 144–145
keeping clear and simple, 151

compatibility checks
cloning remote PDB, 242
converting non-CDB by plugging in, 248–250
running, 236

compatibility, plug-in, 235–237
COMPATIBLE parameter

multisection incremental backups, 192–193
upgrade CDB with catupgrd.sql, 105

compressed backup set output, full CDB backups, 176–177
CON_DBID, identifying pluggable database, 31
configuration file, extract process in GoldenGate, 353–354
conflict resolution, 148–151
CON_ID, identifying containers, 20–22, 31
CONNECT role, creating new PDB from PDB$SEED, 59
connection

to application containers, 81
basics of traditional database, 120–121
to CDB, via root container, 89–90
to containers, 23–26
default services and PDB, 125–129

connection brokers. multithreaded networking, 124
CONNECTION_BROKERS database parameter, 124
consistent (cold) backups, 170–172, 185
consolidated data

container map, 339–342
containers default, 339
cross-PDB DML, 338–339
linking tables across containers, 330–338
location independence, 342–343
sharing data across PDBs, 329–330

consolidated servers, 5
consolidation

data/metadata at CDB level, 30–33
files common to all CDBs, 27–30
history of database use, 5
managing multiple databases with one instance, 10
with multitenant option, 14–15, 83, 123–124
pros and cons of, 11
road to multitenant architecture, 5–6
schema. See schema consolidation
server, 9–10
single-tenant CDBs, 76–77
single-tenant vs. multitenant options, 83
summary of strategies for, 10–11
table, 9

consumer groups
creating PDB resource plan, 277–280
mapping, 277

container map, sharing data across PDBs, 339–342
CONTAINER=ALL clause

changing parameter for all PDBs, 116–117
CREATE USER/CREATE ROLE option, 142
creating master key, 163

opening keystore in TDE, 162
CONTAINER=CURRENT clause, 142, 146–147
CONTAINER_DATA, restricting common user access to, 151–153
containers

application, 80–83
CDB$ROOT. See CDB$ROOT
choosing, 88–89
connecting to, 23–26
dictionary views from, 26–27
identifying, 20–23
linking tables across, 330–338
multitenant, 14
Oracle database vs. lightweight, 6
PDB$SEED, 16
separating system/application metadata, 13–14
setting trigger, 26

CONTAINERS() clause
cross-PDB DML, 338–339
cross-PDB views, 324–325
default value in grant statement, 148
ENABLE CONTAINERS_DEFAULT vs., 339
gathering data from local/proxy PDBs, 342–343
querying own user tables, 325–329

containers default, sharing data across PDBs, 339
control files

common to all containers in CDB, 27–28
in full CDB backups, 176
modifying entire CDB, 90

CON_UID, identifying containers, 21–23
CONVERTING status, non-CDBs, 21
COPIES clause, RMAN backup redundancy, 174
copy

database. See cloning

database to different database with logical replication, 346–347
password file for standby with RMAN, 293–295

copy on write, sharing data across PDBs, 323–324
CPU (Critical Patch Update), 112
CPU usage of PDBs, Resource Manager limiting, 261
Create A Database option, DBCA GUI, 38–39
Create As Container Database option, DBCA GUI, 40–41
CREATE_ CDB_PROFILE_DIRECTIVE, 276
CREATE DATABASE

creating CDB, 51–52
in local UNDO mode, 207–208
managing CDB, 90

CREATE PFILE, 115, 294
CREATE PLUGGABLE DATABASE

connecting to containers, 23
creating new PDB from PDB$SEED, 56–59
creating PDB in SQL*PLUS, 55
locating new PDB created with clone/plug-in, 247
relocating database, 246

CREATE ROLE, 142
CREATE SESSION, privileges, 147–148
CREATE USER

as common user with CONTAINER=ALL, 144–146
as local user with CONTAINER=CURRENT, 142–143
overview of, 142

CREATE_CDB_PLAN_DIRECTIVE, 274
CREATE_CONSUMER_GROUP, 277, 280
CREATE_FILE_DEST, 159
CREATE_PLAN, 277, 280
CREATE_PLAN_DIRECTIVE, 277, 280
credentials, Direct NFS, 241
Critical Patch Update (CPU), 112
cross-database replication, data sharing with, 343

cross-PDB DML, 338–339
cross-PDB views

consolidated data, 329–330
container map, 339–342
containers default, 339
cross-PDB DML, 338–339
linking tables across containers, 330–338
location independence, 342–343
overview of, 324–325
simple user tables, 325–329

cumulative incremental backups, RMAN, 189–191
cursor sharing, schema consolidation, 8–9
cursors, connecting to containers, 24–26

D

DAS (direct attached disks), Oracle Database 8i and 9i, 4–5
data

analysis, with logical replication, 347
consolidating at CDB level, 30–33
moving. See moving data
in multitenant containers, 14
sharing. See sharing data across PDBs
storing metadata with, 11–12

Data Definition Language (DDL), 8, 326–327
data dictionary table, user/role definitions, 141
Data Guard

Active Data Guard, 291
Cloud Control, 314–315
creating physical standby, 291–292
creating physical standby in multitenantt, 308–314
creating standby with Cloud Control, 304–308
duplicating standby with RMAN, 292–304
overview of, 290

standby in cloud, 315–318
Data Guard Broker

configure network setup for standby, 293
Data Guard configuration and, 292
start processes/finish configuration, 297–299

data-linked objects, linking tables across containers, 336–338
data links (object links), 18–19, 80
Data Manipulation Language (DML), 89
Data Pump, 75, 254–255
Data Recovery Advisor, 193
data security

CONTAINER_DATA, 151–153
CREATE_FILE_DEST, 159
creating roles, 153
encryption. See TDE (Transparent Data Encryption)
lockdown profiles, 155–158
PATH_PREFIX, 158
PDB isolation, 158–159
proxy users, 153–155

data table, application containers, 81
database administrator. See DBA (database administrator)
Database as a Service (DBaaS), 5, 79
Database Configuration Assistant. See DBCA (Database Configuration

Assistant)
Database Express 12.2

creating CDB resource plan, 270–273
monitoring PDBs managed by Resource Manager, 285–286
monitoring Resource Manager, 284

DATABASE key word, CDB and PDB backups, 175
database links, 8, 320–321
database offerings, Oracle Public Cloud, 316
database time zone, 92, 98
Database Upgrade Assistant. See DBUA (Database Upgrade Assistant)

DATABASE_PROPERTIES, cross-PDB DML, 339
databases, creating

container. See CDB (container database)
overview of, 36
pluggable. See PDBs, creating

datafiles
for all containers in CDB, 30
CDB administrator restricting, 159
creating standby with RMAN, 294–295
enabling PDB recovery on standby, 313
in full CDB backups, 176
nodata clones and, 243
partial PDB backup of, 181–182
recovering from CDB$ROOT, 186
recovering PDB nonsystem, 188
recovering PDB system, 187–188
remove existing PDB from standby, 312–313
restoring PDB to previous state, 200
restoring/recovering PDB, 202–204
setting transportable tablespaces to read-only, 322

day-to-day management
CDBs, 89–92
choosing container, 88–89
overview of, 88
patching, 112–113
patching and upgrades, 100–101
PDBs. See PDBs, managing
plug-in, 111–112
upgrading CDB, 101–111
using CDB-level vs. PDB-level parameters. See parameters, CDB-level

vs. PDB-level
DBA (database administrator)

lockdown profiles, 155–159
management tasks. See day-to-day management

as proxy user, 153–155
separation of roles, 155

DBaaS (Database as a Service), 5, 79
DBA_CDB_RSRC_PLAN_DIRECTIVES, CDB resource plan, 277
DBA_CONTAINER_DATA dictionary view, 152
DBA_ENCRYPTED_COLUMNS, TDE-encrypted columns, 164
DBA_HIST views, AWR, 31
DBA_OBJECTS, Oracle-maintained objects, 13
DBA_PDBS dictionary view, PDBs/their status, 21–22
DBA_PDB_SAVED_ STATES view, opening/closing PDBs, 96
DBA_ROLES, Oracle-maintained objects, 13
DBA_SOURCE view, 16–18
DBA_USERS view, 13, 324–325
+DBBACKUP disk group, full CDB backup, 177
DBCA CLI, creating CDB, 42–44
dbca command, creating CDB, 38
DBCA (Database Configuration Assistant)

creating CDB, 90
creating CDB using DBCA CLI, 42–44
creating CDB using DBCA GUI, 37–42
creating database in local UNDO, 207
creating PDB, 65–66

DBCA GUI, creating CDB, 37–42
DB_CACHE_SIZE parameter, PDB memory allocation, 282
DB_FILE_NAME_CONVERT settings, PDB recovery on standby, 313
DBID, identifying containers, 22–23, 31
DBMS_ SQL.PARSE, SQL on multiple PDBs, 98
dbms_preup package, pre-upgrade check for CDB, 102
DBMS_RESOURCE_MANAGER package

adjusting default directive, 268
creating CDB resource plan, 269, 276
modifying CDB resource plan, 273–274

removing PDB resource plan, 281
Resource Manager configuration/management, 263
updating autotask directive, 268

DBMS_RESOURCE_MANAGER_PRIVS package, 264
DBMS_ROLLING package, automatic upgrades, 363
DBMS_SERVICE package, creating services, 133–134
DB_PERFORMANCE_PROFILE, CDB resource plan, 275–276
DBUA (Database Upgrade Assistant)

automating database backup, 104
automating upgrade process, 103
overview of, 110–111

DB_UNIQUE_NAME clause, primary vs. standby databases, 117–118
Dbvisit Replicate, logical replication tool, 363
DDL (Data Definition Language), 8, 326–327
dedicated listener, creating for PDB, 134–137
default directives, CDB resource plan, 267–268, 270–273
DELETE_PLAN, PDB resource plan, 281
deleting (removing)

CDB resource plan, 275
CDB resource plan directive, 275, 277
PDB resource plan, 281

Dell SharePlex, 363
Delphix, cloning/storage de-duplication with, 324
describe file, PDB SPFILE equivalent, 115
dictionaries

multitenant, 16–20, 72
system. See system dictionary

dictionary tables, 16
dictionary views

from containers, 26–27
of dictionary objects, 19
listing all PDBs and their status, 21–22

overview of, 17–18
querying metadata with, 11
stored in CDB$ROOT, 16

differential incremental backups, RMAN, 189–190
direct attached disks (DAS), Oracle Database 8i and 9i, 4–5
Direct NFS, Oracle favoring/promoting, 241
directories

configuring/starting manager in GoldenGate, 353
creating standby with RMAN, 294
schema consolidation and, 8

DISABLE clause, ALTER LOCKDOWN PROFILE, 156
disable database options, with lockdown profiles, 155–156
disaster recovery. See Data Guard
DML (Data Manipulation Language)

cross-PDB DML, 338–339
limiting to current container, 89

drop operations
DROP DATABASE, 90
DROP PLUGGABLE DATABASE, 90, 99–100, 311–312

DUPLICATE command, create standby with RMAN, 295
duplication, RMAN backup redundancy, 174

E

ENABLE clause, ALTER LOCKDOWN PROFILE, 156
ENABLE CONTAINERS_DEFAULT, 339
ENABLE PLUGGABLE DATABASE

creating CDB in SQL*Plus, 48–52
creating database in local UNDO, 207–208
defining multitenant architecture, 72

enable_goldengate_replication, source database setup, 350–351
ENCRYPT keyword, TDE, 163–164
encryption. See TDE (Transparent Data Encryption)
Enterprise Edition, single-tenant in, 77–79

Enterprise Manager
Cloud Control. See Cloud Control
Database Express 12.2. See Database Express 12.2
opening/closing PDBs, 95–96

error messages
Data Guard broker and, 298–299
documentation book for, 298
query user tables for, 325–327

Event Streaming mode, Dbvisit Replicate, 363
event triggers, on PDB operations, 252–253
expire all unused accounts, creating CDB, 54
export, full transportable, 253–255
extended data metadata-linked objects, 333–336
extract process, GoldenGate

BigData support, 359–361
initial extract, 356–357
multitenant support, 353–354
running initial extract, 358
starting, 358–359

F

fallback scenario, planning before upgrades, 104
Fast Recovery Area (FRA), 39, 104, 212
features

disabling with lockdown profiles, 158
not compatible in multitenant, 73–74

file storage (FS), creating CDB without OMF, 46
FILE_ID, datafiles, 30
FILE_NAME_CONVERT clause, creating new PDB from PDB$SEED, 58–59
files, CDB container

control files, 27–28
datafiles, 30
overview of, 27–30

redo logs, 29
SPFILE, 27
temporary tablespaces, 28–29
UNDO tablespace, 28

files, naming database, 36–37
FILESPERSET, multisection incremental backups, 192–193
flashback database, 300–302
flashback logs

in auxiliary instance cleanup, 225
modifying root container, 92
overview of, 213–215
at PDB level, 218–219
planning backup for CDB upgrades, 104

FLASHBACK OFF, 216, 218
FLASHBACK ON, 213–215
flashback PDB

auxiliary instance cleanup, 225
cleaning restore point, 219–220
flashback logging, 213–215
impacting standby database, 223–224
with local UNDO, 215–216
overview of, 213
PITR vs., 221–222
resetlogs, 221–222
restore points at CDB/PDB levels, 216–219
in shared UNDO, 216
single-tenant in Enterprise Edition, 77–78

FORCE LOGGING mode, modifying PDB, 99
FORMAT option, full CDB backups, 176–177
FRA (Fast Recovery Area), 39, 104, 212
FS (file storage), creating CDB without OMF, 46
full CDB backups, 176–178
full CDB recovery, 185

full PDB backups, 180–181
full transportable export/import, 253–255
FULL=Y, IMPDP options, 12

G

-generateScripts, database, 48
GGSCI (GoldenGate Software Command Interface), 352–353
global database name, modifying entire CDB, 90
GoldenGate

configure and start manager, 352–353
configure parameter files for replicat, 355–357
extract configuration file, 353–354
logical replication with, 349
multitenant support in, 349–351
replacing Oracle Streams in multitenant, 73
run initial extract, 358
set up target database, 354–355
start extract and replicat, 358–359
supporting big data adapters, 359–361
table supplemental logging, 352

GoldenGate Software Command Interface (GGSCI), 352–353
grant statement, privileges, 146–148
GRANT_SWITCH_CONSUMER_GROUP, Resource Manager, 264, 279–280
GRANT_SYSTEM_PRIVILEGE, Resource Manager, 264
groups, temporary tablespace, 92
guaranteed restore point, flashback logs, 214–215
GUI (graphical user interface)

creating CDB, 37–42
creating PDB, 65

GUID
clone operations, 240
identifying containers, 22

H

hard-coded users, 142
hard-coding schema name, 7–8
HASH schema, for container map, 342
history

of database use, 4–5
viewing PDB operation, 97

HOST, proxy DBs, 247
hot clone (refreshable copy), 244, 245–246
hot (online, inconsistent) backups, 171–172
HugePages, impact on memory management, 281

I

I/O (input/output)
managing PDB via initialization parameters, 281–283
Resource Manager limiting PDB, 261
setting parameters at PDB level, 267

IaaS (Infrastructure as a Service), 5
IDs (identifiers)

CON_ID for containers, 20–22
CON_UID and DBID for containers, 22–23
DBA_HIST views, AWR, 31
FILE_ID, datafiles, 30

image copies
full CDB backups, 176–177
multisection incremental backups, 192–193
restore and recover PDBs, 187
view full CDB backup details with LIST, 177

importing
full database into new database, 12
full transportable database, 253–255

incremental backups, RMAN

block change tracking for, 91, 191–192
combining with multisection backups, 192–193
keeping image copies up to date with, 176
for optimization, 189–191

Information Lifecycle Management, 74
Infrastructure as a Service (IaaS), 5
inheritance, conflict resolution, 149
initial extract, Golden Gate replication, 356–357, 358
initialization parameters

creating CDB resource plan with PDB profile, 275–276
enabling/disabling PDB resource plan, 281
managing PDB memory and I/O, 281–283

init.ora, storing parameters in older versions in, 113
instance caging, 283–284
instance recovery, CDBs, 184
instance(s)

AWR collecting, 31–32
creating service with SRVCTL, 130–132
initialization parameters controlling, 113
multiple databases managed by one, 4, 10–11
RMAN commands to restore/recover PDB, 203
server consolidation and, 9–10
in traditional database connection, 120–121

invalid objects, recompiling, 55
ISPDB_MODIFIABLE, 116
ISSYS_MODIFIABLE, 116

J

Java, preupgrade.jar file, 103
JDBC (Java Database Connectivity), connecting to containers from, 25

K

KEEP DATAFILES, unplugged PDB, 231

keystore, TDE, 160–163

L

levels, Resource Manager, 264–265
LGWRs (Log Writers), redo logs, 29
licenses

cloud virtual machines requiring, 317
creating PDB in Enterprise Edition, 78–79
multitenant requiring, 72–73
single-tenant not requiring, 72
virtualization and, 10

links, public synonyms and database, 8
LIST command, view full backups, 177–178, 181
listener registration (LREG) background process, 121–123, 127
listener_address string, dedicated listener for PDB, 135
LISTENER_NETWORKS, dedicated listener for PDB, 135
listener.ora file

creating dedicated listener for PDB, 135–136
setting listener to allow threads, 124
static network definition setup, 293

listeners
creating PDB dedicated, 134–137
creating service with SRVCTL, 131–132
default services/connecting to PDBs, 125–129
Oracle Net Listener, 120–121
registration process, 121–123
setting to allow threads, 124

load options, creating CDB with SQL*Plus, 53
local clone

create new PDB for standby, 310
creating inside single PDB, 240–241
creating new PDB, 59–60

local roles, creating, 153

local UNDO
cloning local PDB, 241
cloning remote PDB, 242
flashback with, 215–216
hot cloning remote PDB, 241–242

local UNDO, in 12.2
changing to shared UNDO from, 223
changing UNDO mode, 209–211
changing UNDO tablespace, 208–209
creating database, 207–208
database properties, 207
overview of, 206–207
PDBPITR in, 212–213
using shared or, 211

LOCAL UNDO OFF state, shared UNDO, 211–213, 216
LOCAL UNDO ON state, local UNDO, 211, 215–216
local users

conflict resolution between common and, 148–150
creating with CONTAINER=CURRENT, 142–143
granting local privileges to, 146–147
keeping conflict resolution clear and simple, 150–151
namespace for, 144
as proxy users in multitenant, 153
stored only in single PDB, 140–141
SYSBACKUP privilege for, 174–175

LOCAL_LISTENER parameter, create standby, 294
locally managed tablespaces, 12
LOCAL_UNDO_ENABLED property, database, 207
location independence, sharing data across PDBs, 342–343
locations, altering PDB file. See PDBs, moving files
lock all unused accounts, creating CDB with SQL*Plus, 54
lockdown profiles

disable ALTER SYSTEM, 156–157

disable database options, 155–156
disable features, 158
overview of, 155
PDB isolation, 158–159
single-tenant security and, 76

log in, auditing as proxy users, 153–155
Log Writers (LGWRs), redo logs, 29
logical replication

defined, 346
deprecated features, 348–349
Oracle LogMiner and, 347–348
with Oracle XStream, 361–363
with other third-party options, 363
overview of, 346–347

logical replication, Oracle GoldenGate
configure and start manager, 352–353
configure parameter files for replicat processes, 355–357
extract configuration file, 353–354
multitenant support, 349–351
overview of, 349
run initial extract, 358
set up target database, 354–355
start extract and replicats, 358–359
supporting big data adapters, 359–361
table supplemental logging, 352

logical standby database, 362
logs

flashback, 213–215
multitenant support in GoldenGate, 352
pre-upgrade check for CDB, 102–103
resetlogs, 221–222
resuming CDB upgrade after failure, 108

loopback database link, non-CDBs, 320–321

LREG (listener registration) background process, 121–123, 127
lsnrctl start listener_pdb command, 135–136

M

maintenance, autotask directive, 268
management. See day-to-day management
manager, configure GoldenGate, 352–353
mapping, container, 339–342
master key

create and store in keystore, 162–163
shipping when plugging in/unplugging, 164–165
Transparent Data Encryption setup, 159–160
verifying created keys, 163

MAX_IOPS parameter, limiting PDB I/O, 282
MAX_MBPS parameter, limiting PDB I/O, 282
MAX_SHARED_ TEMP_SIZE, temporary tablespace quota, 28
memory

creating CDB resource plan, 269–271
managing PDB, 281–283
Resource Manager limiting usage of PDBs, 261
server consolidation and, 9–10
setting memory limits, 266–267
setting utilization limits for PDBs, 266–267
virtualization and, 10

memory_limit

CDB resource plan, 266–267, 270–271, 273
CDB resource plan using PDB profiles, 276–277
PDB resource plan, 279

memory_min limit
CDB resource plan, 266, 270–271, 273
CDB resource plan using PDB profiles, 276–277
PDB resource plan, 279

metadata

application container table, 81
Codd’s rules for RDBMS, 11
consolidating at CDB level, 30–33
links, 18–19
in multitenant containers, 14
in pluggable database, 72
stored in system dictionary, 11–12
system vs. application, 13–14
transportable tablespaces in multitenant and, 7

metadata-linked objects, 331–336
MIGRATE state, PDBs, 93
migration, logical replication use case for, 346
modify service, for Oracle RAC PDB, 133
monitoring, Resource Manager, 284–286
MOUNTED state, PDBs, 93, 212
mounted state, performing cold backups with RMAN in, 171
moving data

altering PDB file locations. See PDBs, moving files
in application containers, 247
by cloning, 239–240
by cloning local PDB, 240–241
by cloning remote PDB, 242–247
converting non-CDB, 247–250
full transportable export/import for, 253–255
overview of, 228
in PDBs to cloud, 251–256
transportable tablespaces for, 255–256
triggers on PDB operations for, 252–253

multiple channel backup, RMAN, 192
multisection incremental backup, RMAN, 192–193
multitenant administration. See day-to-day management
multitenant databases

application containers, 80–83

consolidation, 5, 83
data movement, 75
database links, 321
non-CDB depreciation and, 72–73
not an option, 72–74
overview of, 79–80
purchasing license for, 72
supported in GoldenGate, 349–351
unsupported features in, 73–74

multitenant, introduction to
connecting to containers, 23–24
consolidation at CDB level, 27–33
consolidation pros and cons, 10–11
data and metadata at CDB level, 30–33
dictionary views from containers, 26–27
history of database use, 4–5
identifying containers, 20–23
list of containers, 21–22
multiple databases managed by one instance, 10
multitenant containers, 14–16
multitenant dictionaries, 16–20
overview of, 4
road to multitenant, 5–6
schema consolidation, 6–9
server consolidation, 9–10
system dictionary. See system dictionary
system dictionary, containers, 14–16
table consolidation, 9
virtualization, 10

multithreaded mode
LREG running in, 122–123
and multitenant, 123–125

My Oracle Support (MOS), 100, 101

N

name collision, schema consolidation and, 7–8
names

avoid hard-coding schema, 7–8
creating CDB using DBCA GUI, 40
identifying containers with, 20–22
identifying objects with schema/object, 88–89
public synonyms and schema, 8
service, 125–129
tablespace, 8
using OMF for database file, 36–37

namespace
avoid mixing common/local users in same, 144
keeping clear and simple, 150–151

NAS (network-attached storage), 5
NEED UPGRADE status, PDBs, 21
network-attached storage (NAS), 5
networking and services

creating dedicated listener for PDB, 134–137
creating services, 129–134
LREG process, 121–123
networking, multithreaded and multitenant, 123–125
Oracle Net, 120
Oracle Net Listener, 120–121
overview of, 120
service names, 125–129

networking packages, disabling, 158
NEW status, PDBs, 21–22
NLS_DATE_FORMAT environment variable, RMAN, 173
NOARCHIVELOG mode

backing up database in, 104
modifying entire CDB, 90
performing cold backups in, 171, 185

nodata clone, remote PDB, 243
NOFILENAMECHECK, RMAN, 295
NOLOGGING mode, modifying PDB, 99
NOMOUNT state

creating CDB using SQL*Plus, 51–52
restoring CDB using cold backup, 185
unavailable for PDBs, 22, 93

non-CDB (non-container database)
container database vs., 14
converting, 247–251
Data Recovery Advisor used in, 193
database link categories in, 320–321
depreciation of, 72–73
instance caging to CDB resource plan, 283–284
movement away from. See day-to-day management
noncompatible features, 73–74
object identification in, 88
running APEX on, 30–31
as system dictionary in past, 11–14

NORMAL status, PDBs, 21–22
null string, avoid setting prefix to, 144

O

object links (data links), 18–19, 80
objects

creating CDBs by recompiling invalid, 55
identifying in non-CDB, 88
identifying in PDB, 88–89
identifying Oracle-maintained, 12–13

obsolete logical replication features, 348–349
OCI (Oracle Call Interface), connecting to containers, 25
OEM (Oracle Enterprise Manager), 144–146
oerr utility, 298

OMF (Oracle Managed Files)
cloning PDB within same CDB, 59
creating CDB using file storage without, 46
creating CDE with two PDBs, 45–46
creating new PDB from PDB$SEED, 56–58
enabling/disabling block change tracking, 191–192
enabling PDB recovery on standby, 314
file naming with, 36–37
identifying PDB in directory structure, 22
restoring/recovering PDB with RMAN, 203–204

open normally, end of CDB upgrade, 108
OPEN RESETLOGS, 221–222
open state, PDBs, 93–94
operating systems. See OSs (operating systems)
OPT_PARAM hint, 113
Oracle Advanced Replication, as deprecated, 349
Oracle Application Express (APEX), 30–31, 107
Oracle Call Interface (OCI), connecting to containers, 25
Oracle Change Data Capture (CDC), as deprecated, 348
Oracle Cloud Services, back up to, 195–196
Oracle Database Resource Manager. See Resource Manager
Oracle Database versions, history of, 4–5
Oracle Enterprise Manager (OEM), creating local/common user, 143–146
Oracle GoldenGate. See GoldenGate
Oracle LogMiner, 347–348
Oracle Managed Files. See OMF (Oracle Managed Files)
Oracle Net, 120
Oracle Net Listener, 120–121
Oracle Net Services, 120
Oracle Public Cloud, running standby in, 315–318
Oracle Streams

as deprecated, 348–349

only supported in non-CDB architecture, 73
Oracle XStream, logical replication, 361–363
ORACLE_HOME directories

patching using, 112–113
pre-upgrade check for CDB, 101–103
upgrade CDB with catupgrd.sql, 105–106

ORACLE_MAINTAINED column, 142
ORACLE_MAINTAINED flag, 13
ORACLE_SID, consolidating single-tenant CDBs, 76
ora_lreg_SID, LREG process, 121
OSs (operating systems)

credentials in single-tenant security, 76
database resource allocation, 260
distributing resources with Resource Manager, 261
limiting interaction with file system/processes, 158

P

parallel execution servers, Resource Manager, 261
parallel_server_limit, CDB resource plan, 266
parameters

configure replicat processes, 355
create CDB using SQL*Plus, 49–50
create standby with RMAN, 293–295
modifying entire CDB, 90–92
modifying PDB, 98–99
plugging in non-CDB, 249
resuming CDB upgrade after failure, 108–109
running catupgrd.sql to upgrade CDB, 105–107

parameters, CDB-level vs. PDB-level
ALTER SYSTEM RESET, 116
CDB SPFILE, 114
Container=ALL, 116–117
DB_UNIQUE_NAME, 117–118

ISPDB_MODIFIABLE, 116
overview of, 113–114
PDB SPFILE equivalent, 114–115
SCOPE=MEMORY, 116

parent cursors, consolidation of, 8–9
partial CDB backups, 178–179
partial PDB backups, 181–182
partitions, table consolidation and, 9
passwords

create standby with RMAN, 293–295
creating CDB using DBCA CLI, 44–45
creating CDB using SQL*Plus, 50–51
proxy users and, 153–155

Patch Set Update (PSU), 112
patching

CDBs (container databases), 112–113
overview of, 100–101

PATH_PREFIX, lockdown profile, 158
PDB level, Resource Manager, 265
PDB profiles

CDB resource plan, 266–267, 275–276
Resource Manager, 263

PDB SPFILE equivalent, 114–115
PDBADMIN user, creating CDB, 39, 41
PDB_DBA role, 41
PDB_LOCKDOWN parameter

disable ALTER SYSTEM, 157
disable database options, 156
disable features, 158

PDB_OS_CREDENTIALS, lockdown profile, 158
PDBPITR (PDB point-in-time recovery). See also flashback PDB

in local UNDO mode, 212–213

overview of, 200–201
restore/recover PDB with RMAN, 201–204
in shared UNDO mode, 211–212
summary of 12.1, 205–206
where is the UNDO? 204–205

PDB_PLUG_IN_VIOLATIONS

conflict resolution, 151
running compatibility check, 236
upgrading PDBs, 111–112

PDBs, creating
overview of, 55–56, 92–93
from PDB$SEED, 56–59
using catcon.pl script, 67–69
using Cloud Control, 66–67
using DBCA, 65–66
using local clone method, 59–60
using SQL Developer, 60–64

PDBs, managing
dropping, 99–100
modifying, 98–99
new, 92–93
opening and closing, 93–96
overview of, 92
running SQL on multiple PDBs, 97–98
view operation history, 97
view state of, 97

PDBs, moving files
altering file locations, 228–229
application container considerations, 247
cloning, 239–240
cloning local PDB, 240–241
cloning remote PDB, 242–247
to cloud, 251–252
converting non-CDB database, 247–251

full transportable export/import, 253–255
transportable tablespaces, 255–256
triggers, 252–253

PDBs, moving files with plug-in/unplug
application containers, 247
check compatibility for plug-in, 235–237
overview of, 229
PDB archive files, 238–239
plug in PDB as clone, 237–238
plug in/unplug operations, 229
plugging in non-CDB, 248–250
unplug/plug in PDB, 230–231
unplugged database stays in source, 231–232
XML file contents, 232–235

PDBs (pluggable databases)
accepting all commands, 15
backups, 175–176, 180–183
CDB level parameters vs., 113–118
connecting to containers, 23–26
creating CDB, examples, 44–47
creating CDB resource plan, 269–273
creating dedicated listener, 134–137
creating in SQL*PLUS, 55
creating on source database, 309–311
creating services, 129–134
creating with PDB$SEED container, 17
default services and connecting to, 125–129
dropping, 90
enabling recovery on standby, 313–314
encryption key when plugging in/unplugging, 164–165
isolation, 158–159
listing all/status of all, 21–22
managed by Resource Manager, 285–286
managing memory and I/O, 281–283

modified when modifying CDB, 90–91
one instance opening multiple, 4
querying data, 328–329
removing from source database, 311–312
removing from standby, 312–313
Resource Manager requirements, 263
resource plan, 262, 277–281
restoring and recovering, 187–189
sharing data across. See sharing data across PDBs
single-tenant in Enterprise Edition, 77–79
single-tenant in Standard Edition, 74–77
temporary tablespaces in, 28–29
understanding, 14–15
upgrading, 111–112

PDB$SEED
consolidating single-tenant CDBs, 77
create new PDB on source database, 310
created as part of CREATE DATABASE, 52
creating new PDB, 56–59
creating UNDO tablespace, 210–211
full CDB backup of, 176
opening pluggable database, 53
overview of, 16

PFILE
creating CDB using SQL*Plus, 51–52
creating SPFILE for standby with RMAN, 294
creating SPILE from, 54
recreating SPFILE from, 113
storing parameters in older versions, 113

PGA_AGGREGATE_TARGET, PDB memory allocation, 282
PHASE_TIME number, CDB upgrade after failure, 108–109
physical copy, of database, 346
physical replication, 346, 347

physical standby database, 362
PITR (point-in-time recovery). See also PDBPITR (PDB point-in-time

recovery)
auxiliary instance cleanup, 225
flashback PDB. See flashback PDB
flashback vs., 222–224
impact on standby database, 223–224
local UNDO. See local UNDO, in 12.2
overview of, 200
resetlogs, 221–222

plug, and clone with TDE, 164–165
plug-in/unplug PDB

moving files. See PDBs, moving files with plug-in/unplug
for standby database, 311–312

PLUGGABLE DATABASE keywords
full CDB backup, 177–178
partial CDB backup, 178–179
PDB backup, 175
PDB backup without, 181

pluggable databases. See PDBs (pluggable databases)
pluggable keyword, cross-PDB DML, 339
PMON (Process Monitor) process, 121
point-in-time recovery. See PDBPITR (PDB point-in-time recovery)
PORT, proxy DBs, 247
pre-upgrade, CDB, 101–104
prefix

application container, 151
C##, 144–145, 151

preupgrade.jar file, CDB, 103
preupgrd.sql script

post-upgrade scripts generated by, 109
pre-upgrade check for CDB, 101–103
prechecking fast recovery area, 104

running, 104–105
privileges

cloning remote PDB, 245
conflict resolution between common/local users, 148–150
defining roles for same group of, 141
granting common, 147–148
granting local, 146–147
keeping clear and simple, 150–151
Resource Manager configuring, 263–264
SYSBACKUP system, 174–175
user, 141–142

Process Monitor (PMON) process, 121
profiles, lockdown. See lockdown profiles
properties

changing UNDO mode from database, 207–209
creating PDB, 61, 63

Provision Pluggable Databases, creating PDB, 66–67
provisioning

running initial extract, 358
source data to target, to create baseline, 356–357

proxy PDBs, 246–247, 342–343
proxy users, 153–155
ps command

identifying LREG thread, 123
viewing thread and process details, 125

PSU (Patch Set Update), 112
Public Cloud, standby in Oracle, 315–318
public synonyms, schema consolidation and, 8

Q

queries
BOOTSTRAP$ table, 14
CDB_ views, 151

current state of all PDBs, 97
flashback, 356
user table, 325–329

_query_on_physical=no, prevent use of Active Data Guard, 291
Quest SharePlex, 363
quota, temporary tablespace, 28

R

RAC (Real Application Clusters)
adding service for PDB, 132–133
in Oracle Database 8i and 9i, 4
Oracle Net Listener and, 120–121

RANGE schema, container map, 342
RDBMS, Codd’s rules for, 11
read-only data

Active Data Guard enabling, 291
cloning local PDB, 241
multiple databases sharing common, 322–324
for transportable database during import process, 253

READ ONLY state, PDBs, 93
read/write mode

cloning local PDB in 12.2, 241
cloning remote PDB, 242
cloning remote PDB as refreshable copy, 244–245
opening PDB$SEED, 211

READ WRITE state, PDBs, 93
RECOVER command

PDBPITR in local UNDO mode, 212
syntax, 204–205

RECOVER PLUGGABLE DATABASE, PDBPITR, 212–213
recovery. See also Data Guard; flashback PDB; PITR (point-in-time

recovery)
backup and. See backup

CDB restore and, 184–187
with Data Recovery Advisor, 193
DBA must never fail in, 290
disabling on standby, 224
enabling for PDB with standby, 313–314
instance, 184
overview of, 170
PDB restore and, 187–189
SYSBACKUP privilege for, 174–175

Recovery Manager. See RMAN (Recovery Manager)
redo apply, PDB recovery on standby, 313–314
redo logs

common to all containers in CDB, 29
create standby with Cloud Control, 306
create standby with RMAN, 300–302
Data Guard broker/duplicate database and, 298–299
LogMiner extracting/displaying changes from, 347–348
modifying entire CDB, 90
testing standby created with RMAN, 302–303

REDO, PDB point-in-time recovery, 200
REDO stream, resetlogs, 221–222
redundancy, RMAN backup, 174
refreshable copy (hot clone), 244, 245–246
registration

creating new PDB, 125–126
listener, 121–123
in traditional database connection, 120–121

RELOCATE statement, 96, 245–246
RELOCATED status, 246
RELOCATING status, 245
remote clone

of non-CDB, 250–251
plug/unplug operations in, 75

from previous versions, 112
remote clone PDB

create new PDB for standby, 311
nodata, 243
overview of, 242–243
proxy PDB, 246–247
refreshable copy (hot clone), 244–245
RELOCATE statement, 245–246
root container database link used by, 321
splitting PDB, 243
for standby database, 311

remote database link, non-CDBs, 320–321
remote file server (RFS), remote cloning from previous version, 112
remove service, Oracle RAC PDB, 133
rename of PDB, 312
replicat processes, BigData support in GoldenGate, 359–361
replicat processes, GoldenGate

configure parameter files, 355
defined, 349
initial extract, 357
setup target database, 354–355
topology example, 350

replication
data sharing with cross-database, 343
logical. See logical replication
physical vs. logical, 346–347

reports
Automatic Workload Repository, 31–32
CDB backup, 179–180
PDB backup, 181, 183

RERESHING status, 244
resource consumer groups, Resource Manager allocating resources to, 261
Resource Manager

basics, 260–261
creating CDB resource plan. See CDB resource plan, Resource

Manager
creating PDB resource plan, 277–281
instance caging, 283–284
levels, 264–265
managing PDB memory/I/O, 281–283
monitoring, 284–286
overview of, 260
requirements, 263–264
terminologies, 261–263

resource plan directives
adding to CDB resource plan, 274
adjusting default and autotask, 267–268
creating CDB resource plan, 269–273
default, 267–268
removing CDB, 275, 277
Resource Manager, 261
specifying resource utilization limits, 267
updating CDB resource plan, 273–274
viewing CDB, 285

resource plan, Resource Manager
creating CDB. See CDB resource plan, Resource Manager
creating PDB, 277–280
defined, 261–262
enabling/disabling/removing PDB, 281
viewing CDB, 285

RESOURCE_MANAGER_PLAN parameter, enable/disable PDB resource plan, 281
resources, prioritizing with Resource Manager. See Resource Manager
response file, creating CDB, 43–47
restore command

enabling PDB recovery on standby, 314
PDBPITR in local UNDO mode, 212–213

restore points
at CDB and PDB levels, 216–219
for CDB upgrades, 103–104
clean, 219–220
dropping when testing upgraded application, 109
flashback logs using guaranteed, 214–215

retention period, flashback log, 214
REVOKE_SWITCH_CONSUMER_GROUP, Resource Manager, 264
REVOKE_SYSTEM_PRIVILEGE, Resource Manager, 264
RFS (remote file server), remote cloning from previous version, 112
RMAN (Recovery Manager)

backup optimization, 189–193
backup redundancy, 174
CDB and PDB backups, 175
CDB reporting, 179–180
cold backups, 171
commands to restore/recover PDB, 201–204
creating standby database. See standby database, creating with RMAN
default backup, 173–174
incremental backups, 90
PDB backup restrictions, 183
running standby in the cloud, 317
setting transportable tablespaces to read-only, 322
TAG option, 170
unplugged databases part of, 231

roles
creating with CREATE ROLE, 142
lockdown profile, 155–158
proxy user, 153–155
schema consolidation and, 8
understanding, 141–142

ROLES clause, creating PDBs with SQL*Plus, 41
roll-forward recovery phase, point-in time, 200–201

rollback recovery phase, point-in time, 200–201
rolling upgrades, logical standby used in, 362–363
root container database link, administration only, 321

S

SAN (storage area network), 5
SAVE STATE command, 95–96
scheduler window, CDB resource plan, 274–275
schema

names, 88–89
synonymous to user, 141

schema consolidation
cursor sharing, 8–9
multitenant overcoming limitation of, 23–26
overview of, 6
pros and cons, 11
public synonyms and database links, 8
roles, tablespace names, and directories, 8
schema name collision, 7–8
transportable tablespaces, 7

SCN (system change number), Golden Gate replication, 356–357
SCOPE=MEMORY clause, 116
SCOPE=SPFILE clause, 116–117
scp command, copying files to target database location, 230
scriptDest, database creation scripts, 48
security

creating CDB using SQL*Plus, 54
overview of, 140
proxy users and, 153–155
single-tenant and, 75–76

security, data
CONTAINER_DATA, 151–153
lockdown profiles, 155–158

PDB isolation, 158–159
roles, 153
Transparent Data Encryption, 159–165

Security Patch Update (SPU), 112
security, user

common grants, 147–148
common vs. local, 140–141
conflict resolution, 148–150
CONTAINER-CURRENT clause, 142–143
CONTAINER=COMMON clause, 144–146
keeping clear and simple, 150–151
local grants, 146–147
understanding, 141–142

servers
consolidation of, 9–10
Oracle Database 11g application, 5
Oracle Database 8i and 9i client, 4–5

service names, 125–129
services

creating generally, 129–130
creating with DBMS_SERVICE, 133–134
creating with SRVCTL, 130–133
updating with LREG process, 122

sessions
initialization parameters controlling behavior of, 113
user, 141

SESSIONS parameter value, PDBs vs. CDB, 91
SET CONTAINER privilege, users, 154
setasmgidwrap utility, creating CDB in SQL*Plus, 49
SET_CONSUMER_ GROUP_MAPPING, PDB resource plan, 277
SGA_MIN_SIZE parameter, PDB memory allocation, 282
SGA_TARGET parameter, PDB memory allocation, 282
sharding, and multitenant, 74

share values, CDB resource plan, 265–266
shared UNDO mode

changing, 209–210
changing to local UNDO mode from, 223
clean restore point in, 219–220
flashback in, 216
LOCAL_UNDO_ENABLED in, 207
no reason to use in 12.2, 211
PDBPITR in, 211–213
problem with, 206–207

SHARED_POOL_SIZE parameter, PDB memory allocation, 282
shares, Resource Manager, 263
sharing data across PDBs

common read-only data, 322–324
cross-database replication, 343
database links, 320–321
overview of, 320

show all, RMAN configuration, 173–174
SHOW CONFIGURATION, 302
SHOW SPPARAMETER, 114–116
shutdown, CDB, 90–91
shutdown pluggable database, PDBs, 94–95
-silent parameter, CLI

creating CDB using DBCA, 42, 44
creating CDB using DBCA CLI, 44–45

single-instance CDB, Data Recovery Advisor, 193
single-tenant configuration

defined, 72
in Enterprise Edition, 77–79
estimating length of time for CDB upgrade, 110
in Standard Edition, 75–77
upgrading CDB with needed components, 107

skip scan index optimization, table consolidation, 9

snapshot copy, cloning local PDB, 241
software keystore. See keystore, TDE
source database

create new PDB on, 309–311
create standby with RMAN, 293, 295–296
logical replication in sync with, 346–347
plugging in non-CDB, 248–250
setup multitenant for GoldenGate replication, 350–351
unplugged database stays in, 231–232

SOURCE$ dictionary table, multitenant dictionaries and, 16–17
SPFILE parameters

CDB, 114
common to all containers in CDB, 27
creating from PFILE, 54
creating standby with RMAN, 294
full CDB backup of, 176
PDB equivalent to, 114–115
for site vs. service, 118
storing in current versions, 113
upgrading CDB with catupgrd.sql, 105

SPU (Security Patch Update), 112
SQL

creating PDB using SQL Developer, 61–63
running on multiple PDBs, 97–98

SQL Developer
configuring Resource Manager, 271
creating PDB, 60–64
monitoring Resource Manager, 285

sqlnet.ora, keystore location setup for TDE, 160
SQL*Plus

creating CDB resource plan, 269
monitoring Resource Manager, 285
startup pluggable database and, 94–95

SQL*Plus, create CDB manually
add default USERS tablespace, 52
adding database to Oracle Restart, 55
creating basic parameter file, 49–50
creating catalog and load options, 53–54
creating password file, 51
creating pluggable database, 55
creating SPFILE from PFILE, 54
lock/expire all unused accounts, 54
opening PDB$SEED PDB, 53
overview of, 47–48
prerequisite steps, 49
recompiling all invalid objects, 55
setting up for catcon.pl script, 50–51
starting database instance in nomount, 51–52
updating /etc/oratab file, 50–51

SRVCTL utility
adding service for Oracle RAC PDB, 132–133
creating service, 130–133
stopping service, 129

Standard Edition, single-tenant in, 74–77
standby database

Active Data Guard option for, 291
in cloud, 315–318
Cloud Control, 314–315
create physical, 291–292
creating with Cloud Control, 304–308
duplicating with RMAN. See standby database, creating with RMAN
evolving into Data Guard, 290
as exact copy of primary database, 290
impact of flashback on, 223–224
logical, 362–363
managing physical, in multitenant, 308–314

standby database, creating with RMAN

back up source database, 293
choose subset of source database, 295–296
further configuration, 304
overview of, 292
password file/ temporary parameter file, 293–295
run duplicate process, 295
set up network, 293
set up static network services, 292–293
start Data Guard broker/configuration, 297–299
test configuration, 302–303
verify configuration/fill in missing pieces, 299–302

STANDBY_FILE_MANAGEMENT=AUTO parameter, create new PDB on source
database, 309–311

standbys clause, 309–311, 313
START request, multitenant support in GoldenGate, 358
startup, CDB, 90–91
startup pluggable database statement, opening/closing PDBs, 94
state

modifying PDB, 61, 64
opening/closing PDBs, 95–96
viewing PDB, 93, 97

static connection, testing RMAN standby database, 302–303
static network definition, creating RMAN standby database, 292–293
Statspack, statistics collection, 33
status

adding service for Oracle RAC PDB, 132–133
listing all containers and their, 21–22
reviewing PDB, 64

storage
consolidation, 5
limit, for PDBs, 98
snapshots, 104, 323–324

storage area network (SAN), 5

STORAGE clause, creating new PDB from PDB$SEED, 59
strace utility, viewing LREG, 122
Streams

as deprecated, 348–349
non-CDBs supporting, 73

SUBMIT_PENDING_AREA procedure, 268
subplan, Resource Manager, 262
subsetting, create standby with RMAN, 295–296
supplemental logging, multitenant support in GoldenGate, 352
switchover, testing standby database, 302–303
synonyms

database links and public, 8
schema names using private, 8

SYSAUX tablespace
cloning with proxy PDBs, 246
restore/recover PDB with RMAN, 202–204
storing metadata in, 11–12
tablespace point-in-time recovery, 200

SYSBACKUP privilege
for backup and recovery, 174–175
in full PDB backup, 180

SYS.COL$, column metadata stored in, 13
SYSDBA privilege

dropping PDB, 99–100
flashback PDB, 222

SYS.TAB$, table/dictionary table metadata stored in, 13–14
system change number (SCN), Golden Gate replication, 356–357
system data, in CDB$ROOT, 72
system dictionary

connecting to containers, 23–24
databases storing metadata in, 11–12
dictionary views from containers, 26–27

identifying containers, 20–23
list of containers, 21–22
multitenant containers, 14–16
multitenant dictionaries, 16–20
previous versions of, 11–14

system metadata
in CDB$ROOT, 72
separating application metadata from, 18–19
vs. application metadata, 13–14

system packages, stored in CDB$ROOT, 16
system privilege, Resource Manager, 263–264
system roles, avoid mixing with user roles, 153
SYSTEM tablespace

CDB$ROOT container and, 16–17
metadata stored in, 11–12
proxy DBs cloning, 246
restore/recover PDB with RMAN, 202–204
in tablespace point-in-time recovery, 200

T

tables
consolidation of, 9, 11
creating CDB resource plan, 269
definitions stored in dictionary, 13
linking across containers, 330–338
sharing data across PDBs, 325–329
system vs. application metadata, 13–14
TDE encrypting columns of, 163

tablespace point-in-time recovery (TSPITR), 200–201
tablespace(s)

application containers, 81
backing up database, 104
CDB administrator restricting, 159

metadata stored in, 11–12
nodata clones and, 243
partial CDB backup of, 178–179
partial PDB backup of, 181–182
recover CDB$ROOT, 186
recover lost PDB, 188–189
restore complete PDB, 201
schema consolidation and, 8
splitting PDB and, 243
storage snapshots/copy on write, 323–324
SYSAUX. See SYSAUX tablespace
SYSTEM. See SYSTEM tablespace
TDE encrypting all data in, 164
temporary. See temporary tablespace
transportable. See transportable tablespace
UNDO. See UNDO tablespace
USERS. See USERS tablespace

TAG option, RMAN, 170, 176–177
target database, multitenant support in GoldenGate, 354–355
TDE (Transparent Data Encryption)

Cloud Control setup, 161
creating keystore, 160–161
creating master key, 162–163
encrypting data, 163–164
keystore location setup, 160
opening keystore, 162
overview of, 159
plug and clone with, 164–165
setting up, 159–160
summary of, 165
verifying created keys, 163

TEMP file trap, plugging in non-CDB, 249–250
TEMPFILE REUSE, plugging in non-CDB, 150
tempfiles, recovery from lost CDB, 186–187

temporary tablespace
common to all containers in CDB, 28–29
modifying entire CDB, 92
modifying PDB, 98
proxy DBs cloning, 246–247

terminologies, Resource Manager, 261–263
testing, standby database created with RMAN, 302–303
third-parties

logical replication, 363
LogMiner/creating own log miner, 348

thread processes, killing, 125
THREADED_EXECUTION=TRUE, configuring multithreaded option, 124
TIMESTAMP WITH LOCAL TIME ZONE, modifying root container, 92
TNS (Transparent Network Substrate) connection string, 342
tnsnames.ora file

dedicated listener for PDBs, 137
network setup for standby with RMAN, 293
service names and, 127–129

topology, multitenant support in GoldenGate, 350
transactions

opening in another container, 24
point-in-time recovery using auxiliary instance, 205–206
roll-forward recovery phase and, 200–201
rollback recovery phase and, 200–201, 204
UNDO containing information about all, 206

Transparent Data Encryption. See TDE (Transparent Data Encryption)
Transparent Network Substrate (TNS) connection string, 342
TRANSPORT TABLESPACE command, 322
transportable database, 253–255
transportable tablespace

data movement with single-tenant and, 75
limitations of, 255
schema consolidation and, 7

sharing common read-only data, 322–323
transportable database vs., 253–254
use case for, 255–256

triggers
Oracle LogMiner vs. use of, 348
PDB operations, 252–253
setting container, 26

TSPITR (tablespace point-in-time recovery), 200–201

U

UID, in clone operations, 240
UNDO mode

changing, 208–209
defining to local in 12.2, 206–207
impact on standby of changing, 223
UNDO tablespace vs., 28

UNDO tablespace
common to all containers in CDB, 28
local UNDO in 12.2, 206–211
modifying root container, 92
PDBPITR in local UNDO, 212–213
point-in-time recovery and, 200
recover PDB to point-in-time, 204–205
restore/recover PDB with RMAN, 202–204

unplug operation. See PDBs, moving files with plug-in/unplug
UNPLUGGED status, PDBs, 21–22
UNUSABLE status, PDBs, 21–22
UPDATE_CDB_ DEFAULT_DIRECTIVE, CDB resource plan directive, 268
UPDATE_CDB_PLAN, CDB resource plan, 273–274
UPDATE_CDB_PLAN_DIRECTIVE, CDB resource plan, 273–274
updates

autotask directive in CDB resource plan, 268
CDB resource plan directives, 273–274

default directive in CDB resource plan, 268
upgrades

compatibility check for, 236
logical standby used in rolling, 362–363
overview of, 100–101

upgrades, CDB
backup or restore point, 103–104
with catupgrd.sql, 105–107
estimating length of time for, 110
open normally, 108
overview of, 101
patching, 112–113
plugging in, 111–112
post-upgrade scripts, 109
pre-upgrade, 101–103
pre-upgrade script, 104–105
test and open service, 109–110
upgrade resume after failure, 108–109
using Database Upgrade Assistant, 110–111

USER$ data dictionary table, user and role definitions, 141
user security

common vs. local users, 140–141
conflict resolution, 148–150
creating common users, 144–146
creating local users, 142–143
creating users with CREATE USER, 142
granting common privileges, 147–148
granting local privileges, 146–147
identifying system users, 142
understanding, 141–142

user tables
adding query hint, 328
querying data from PDB, 328–329

querying only some PDBs, 328
simple status query on, 325–327

users
creating roles, 153
proxy, 153

USERS tablespace
creating CDB using SQL*Plus, 52
partial CDB backup of, 178–179
partial PDB backup of, 182
restoring/recovering PDB with RMAN, 202

USER_TABLESPACES clause, cloning remote PDB, 243
utilization limits

autotask resource plan directives, 267–268
creating CDB resource plan, 270–273
setting in CDB resource plan, 266–267
using instance caging with Resource Manager, 283–284

utilization_limit parameter, CDB resource plan, 266
utluppkg.sql script, CDB, 101
utrlp.sql script, 55

V

V$ views, 151
VALIDATE command, block corruption check, 193–194
VALIDATE DATABASE command, standby configuration, 299–300
VALIDATE_PENDING_ AREA procedure, default resource plan directive, 268
validation, default resource plan directive, 268
/var/tmp, restore/recover PDBs in RMAN, 203
V$DATABASE view, 27
v$encrypted_tablespaces, viewing, 164
versions, logical replication pairing databases with mismatched, 346
views. See also V$ views

dictionary, 17–18

PDB operation history, 97
state of PDBs, 97

virtual machines, 5
virtualization

Oracle Database 12c, 5
overview of, 10
pros and cons of consolidation, 11

v$logmnr_contents view, LogMiner, 348
V$PARAMETER view, 116
V$PDB_INCARNATION view, 221–222
V$PDBS view, 96
V$PROCESS view, 125
V$RMAN_CONFIGURATION view, 173–174
V$SERVICES view, 131–132
V$SESSION view, 177

W

wallet directory, specifying backup, 163

X

XML file
contents of, 232–235
moving PDB archive files, 238–239
plug-in compatibility for, 235
plugging in non-CDBs, 248–249
unplugging/plugging in PDBs, 230–231

XStream, logical replication with, 361–363

	Title Page
	Copyright Page
	Dedication
	About the Authors
	Contents at a Glance
	Contents
	Introduction
	PART I What Multitenant Means
	1 Introduction to Multitenant
	History Lesson: A New Era in IT
	The Road to Multitenant
	Schema Consolidation
	Table Consolidation
	Server Consolidation
	Virtualization
	Multiple Databases Managed by One Instance
	Summary of Consolidation Strategies

	The System Dictionary and Multitenant Architecture
	The Past: Non-CDB
	Multitenant Containers
	Multitenant Dictionaries
	Working with Containers

	What Is Consolidated at CDB Level
	Data and Metadata at CDB Level

	Summary

	2 Creating the Database
	Creating a Container Database (CDB)
	What About OMF?

	CDB Creation Options
	Creating a Pluggable Database
	Create a New PDB from PDB$SEED
	Create a New PDB Using the Local Clone Method
	Create a PDB Using SQL Developer
	Create a PDB Using the DBCA
	Create a PDB Using Cloud Control

	Using the catcon.pl Script
	Summary

	3 Single-Tenant, Multitenant, and Application Containers
	Multitenant Architecture Is Not an Option
	Non-CDB Deprecation
	Noncompatible Features

	Single-Tenant in Standard Edition
	Data Movement
	Security
	Consolidation with Standard Edition 2

	Single-Tenant in Enterprise Edition
	Flashback PDB
	Maximum Number of PDBs

	Using the Multitenant Option
	Application Containers
	Consolidation with Multitenant Option

	Summary

	PART II Multitenant Administration
	4 Day-to-Day Management
	Choosing a Container to Work With
	Managing the CDB
	Create the Database
	Database Startup and Shutdown
	Drop the Database
	Modify the Entire CDB
	Modify the Root

	Managing PDBs
	Create a New PDB
	Open and Close a PDB
	View the State of PDBs
	View PDB Operation History
	Run SQL on Multiple PDBs
	Modify the PDB
	Drop a PDB

	Patching and Upgrades
	Upgrade CDB
	Plugging In
	Patching

	Using CDB-Level vs. PDB-Level Parameters
	CDB SPFILE
	PDB SPFILE Equivalent
	SCOPE=MEMORY
	Alter System Reset
	ISPDB_MODIFIABLE
	Container=ALL
	DB_UNIQUE_NAME

	Summary

	5 Networking and Services
	Oracle Net
	The Oracle Net Listener
	The LREG Process
	Networking: Multithreaded and Multitenant
	Service Names
	Default Services and Connecting to PDBs
	Creating Services

	Create a Dedicated Listener for a PDB
	Summary

	6 Security
	Users, Roles, and Permissions
	Common or Local?
	What Is a User?
	CONTAINER=CURRENT
	CONTAINER=COMMON
	Local Grant
	Common Grant
	Conflicts Resolution
	Keep It Clear and Simple
	CONTAINER_DATA
	Roles
	Proxy Users

	Lockdown Profiles
	Disable Database Options
	Disable Alter System
	Disable Features

	PDB Isolation
	PDB_OS_CREDENTIALS
	PATH_PREFIX
	CREATE_FILE_DEST

	Transparent Data Encryption
	Setting Up TDE
	Plug and Clone with TDE
	TDE Summary

	Summary

	PART III Backup, Recovery, and Database Movement
	7 Backup and Recovery
	Back to Basics
	Hot vs. Cold Backups
	RMAN: The Default Configuration
	RMAN Backup Redundancy
	The SYSBACKUP Privilege

	CDB and PDB Backups
	CDB Backups
	PDB Backups
	Do Not Forget Archive Logs!

	Recovery Scenarios
	Instance Recovery
	Restore and Recover a CDB
	Restore and Recover a PDB

	RMAN Optimization Considerations
	The Data Recovery Advisor
	Block Corruption
	Using Cloud Control for Backups
	Back Up to the Cloud

	Summary

	8 Flashback and Point-in-time Recovery
	Pluggable Database Point-in-Time
	Recover PDB Until Time
	Where Is the UNDO?
	Summary of 12.1 PDBPITR

	Local UNDO in 12.2
	Database Properties
	Create Database
	Changing UNDO Tablespace
	Changing UNDO Mode
	Shared or Local UNDO?

	PDB Point-in-Time Recovery in 12.2
	PDBPITR in Shared UNDO Mode
	PDBPITR in Local UNDO Mode

	Flashback PDB
	Flashback Logging
	Flashback with Local UNDO
	Flashback in Shared UNDO
	Restore Points at the CDB and PDB Levels
	Clean Restore Point

	Resetlogs
	Flashback and PITR
	When Do You Need PITR or Flashback?
	Impact on the Standby Database
	Auxiliary Instance Cleanup

	Summary

	9 Moving Data
	Grappling with PDB File Locations
	Plugging In and Unplugging
	Unplug and Plug In a PDB
	An Unplugged Database Stays in the Source
	What Exactly Is in the XML File?
	Check Compatibility for Plug-In
	Plug In a PDB as Clone
	PDB Archive File

	Cloning
	Cloning a Local PDB
	Cloning a Remote PDB

	Application Container Considerations
	Converting Non-CDB Database
	Plug In a Non-CDB
	Cloning a Non-CDB

	Moving PDBs to the Cloud
	Triggers on PDB Operations
	Full Transportable Export/Import
	Transportable Tablespaces
	Summary

	PART IV Advanced Multitenant
	10 Oracle Database Resource Manager
	Resource Manager Basics
	Key Resource Manager Terminologies
	Resource Manager Requirements
	Resource Manager Levels

	The CDB Resource Plan
	Resource Allocation and Utilization Limits
	Default and Autotask Directives
	Creating a CDB Resource Plan

	The PDB Resource Plan
	Creating a PDB Resource Plan
	Enable or Disable a PDB Resource Plan
	Removing a PDB Resource Plan

	Manage PDB Memory and I/O via Initialization Parameters
	PDB Memory Allocations
	Limit PDB I/O

	Instance Caging
	Instance Caging to Resource Manager

	Monitoring Resource Manager
	Viewing the Resource Plan and Plan Directives
	Monitoring PDBs Managed by Resource Manager

	Summary

	11 Data Guard
	Active Data Guard Option
	Creating a Physical Standby
	Duplicate with RMAN
	Create a Standby with Cloud Control

	Managing a Physical Standby in a Multitenant Environment
	Creating a New PDB on the Source
	Removing PDB from Source
	Changing the Subset
	Cloud Control

	Standby in the Cloud
	Summary

	12 Sharing Data Across PDBs
	Database Links
	Sharing Common Read-Only Data
	Transportable Tablespaces
	Storage Snapshots and Copy on Write

	Cross-PDB Views
	Simple User Tables
	Consolidated Data

	Cross-Database Replication
	Summary

	13 Logical Replication
	Oracle LogMiner
	Obsolete Features
	Oracle CDC
	Oracle Streams
	Oracle Advanced Replication

	Oracle GoldenGate
	Multitenant Support in Oracle GoldenGate
	Big Data Adapters

	Oracle XStream
	Logical Standby
	Use in Upgrade

	Other Third-Party Options
	Dbvisit Replicate
	Dell SharePlex

	Summary

	Index

